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Abstract: Checkpointing is a general technique for xexe
ing applications. Unfortunatelgurrent checkpointing sys-
tems add manseconds of werhead per checkpoint. Their
high overhead preents them from makingilures transpar-
ent to users and othexternal entities, saaflures lose visi-

Checkpointing ders a general ay to recwer a pro-
cess. Checkpointing is a form of backd error receery
that periodically sees the complete state of a running pro-
cess to stable storage. Checkpointing with rollbackvergo
is used most often as aullt-recavery technique, Wit it can

ble state. This paper presents a checkpointing system calletbe used in other areas as well. Process migration can use

Discount Checking that isulit on reliable main memory

checkpointing to mee a running process to ameomputer

and high-speed transactions. Discount Checking can bdLitzkow92]. Deluggers can use checkpoints xamine the

used to mak general-purpose applications rez@ble eas-
ily and with lav overhead. The checkpoints @k by Dis-
count Checking arexéemely fst, ranging for our tget
applications from 5Qus to a fev milliseconds. Discount
Checkings lov overhead mads it possible to prade ideal
failure transparencby checkpointing eachxternally visi-
ble event. Yet even with this high rate of checkpointing, Dis-
count Checking slos real applications @ by less than
0.6%.

1. Intr oduction

On todays computer systemsaifures such as operat-
ing system and process crashes arachdf life. Persistent

state refers to data on a computer system (such as user files)

that must survie such &ilures. May applications running

on a typical computer manipulate persistent state. Examples

of such applications include e-mail programsravproces-

sors, spreadsheets, CAD programs, databases, and file sy$-

tems. These applications must be rerable; that is, the

user must be able to restart the application after a crash

without losing persistent state. Most programs enable/veco
ery by adding application-specific code toesand receer
user data. This code may bgaked by the user (e.g. an edi-
tor's sa#e command) or by the application (e.g. an editor
autosae). This code may be comgland slav, and it usu-
ally does not sz the complete state of the processt F
example, the undo log in most editors is not presegrv
across program uocations.
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state of a process before a crash. Distal simulation sys-
tems may allov a process to speculatly execute a path
rather than it to synchronize with other processes. If the
speculation is incorrect, the system can use checkpointing to
recover the process to the point in time before the incorrect
speculation [Fujimoto90].

Checkpointing systems sté to be transparent in
terms of @erhead duringdilure-free operation, handling of
failures, and modifications of the program needed to support
recovery.

Performance transparency. The checkpointing system
should not increase significantly the time itdako &e-
cute a program, and it should not increase significantly
the disk or memory space required to run the program.
Users should be unare of ay slovdovn during nor-
mal operation.

Failure transparency. The checkpointing system
should recwer the process without losingovk that is
visible to eternal entities (such as users). External enti-
ties are those whose state can not be undone.damsily
example, it is dificult to undo actions caused by sending
commands or output to humans, printers, and missile
launchers. Asdr as the outsideavid can tell, the pro-
cess should reger back to the same state isvin
before the crash.df example, a process should not print
a message indicating that a backugswalen, then 4il

and recwer to a point before the backumsvtalen. In

this scenario, a userould be misled if the proceszee
cuted diferently after receery and did not actually tak

a backup. @ achi@e failure transpareng the system
must talke a checkpoint to ensure that the state from



which the system outputs a message to the user willcheckpoints fot i bckp is 30 minutes [\&ng95]. The high

never be rolled back. This checkpoint is a form of “out-
put commit” [Strom85, Elnozal®3].

* Programmer transparency. Since checkpointing is a
general receery technique, it dérs the potential for
easily making man applications reogerable. A pro-

overhead per checkpoint and long intdribetween check-
points limit the use of checkpointing to long-running pro-
grams with a minimal need foaifure transparengsuch as
scientific computations. In contrast, wewid like to male
checkpointing a general tool for re@ving general-purpose

grammer should be able to use the checkpointing systenfipplications. In particularinteractve applications require

to male a program rea@rable with minimal program-
ming efort. It should be much simpler to handle reco

ery using a checkpointing library than by writing custom

recovery code for each meapplication.
Current checkpointing systemailf to attain one or

frequent checkpoints (at each usa&ible event) to mask
failures from users.

Researchers ke deeloped may optimizations to
lower the @erhead of checkpointing. Incremental check-
pointing [Elnozaly92] only saes data that as modified in

more of the abee three goals for general-purpose pro- the last checkpoint inteay, using the page protection hard-
grams. In particularcurrent checkpointing systems incur a Ware to identify the modified data. Incremental checkpoint-

high overhead (may seconds) per checkpoint. Their high
overhead preents them from prading failure transpareryc

ing often, lut not alays, imprees performance. df
example, [Plank95] measures theethead of incremental

for interactie applications, because it is infeasible for them checkpointing to be 4-53 seconds per checkpoint.

to take a checkpoint fonery useivisible event.

Asynchronous checkpointing (sometimes called

In this paperwe present a checkpointing system, Dis- forked checkpointing) writes the checkpoint to stable stor-

count Checking, that isuidt on reliable main memory and

age while simultaneously continuing teeeute the program

high-speed transactions. Discount Checking meets all thredLi94]. In contrast, synchronous checkpointing (sometimes

of the abwe goals. Ogrhead per checkpoint for our gat
applications ranges from 5 to 2 milliseconds. This o
overhead mads it possible to prade ideal &ilure transpar-
eng/ by checkpointing eachxternally visible gent. As ar

as the user and othekternal entities can tell, a process
recovers back toxactly the same state itas in before the
crash. Een with this high rate of checkpointing, Discount
Checking slars real applications @m by less than 0.6%.
Furthermore, Discount Checking is easy to us®. rRost

called sequential checkpointingpits until the write to sta-
ble storage is complete before continuimgaiting the pro-
cess. Asynchronous checkpointing candototal werhead
by allowving the process taxecute in parallel with the act of
taking the checkpoint. Heever, asynchronous checkpoint-
ing sacrificesdilure transparemncto gain this performance
improvement. © achiee failure transparerng a checkpoint
must complete before doing wrk that is visible eter-
nally—this guarantees that no visible@nk is lost during a

programs, the programmer simply links the program with failure. In asynchronous checkpointing, the checkpoint does

the Discount Checking libramadds a#i ncl ude file, and
adds a call talc_i ni t at the bginning of the program.
Discount Checking automatically t&& checkpoints and
recovers the process during restart.

2. Related Work

Recaoering a &iled process means reconstructing the

not complete until manseconds after it is initiatedisible

work performed after this checkpoint will be lost if the sys-
tem crashes before the checkpoint is complete. This may be
acceptable for programs that do not communicate fre-
quently with eternal entities, bt it hinders the use of
checkpointing for general applications.

Memory eclusion is another technique used tevéo

state of the process, then restarting it. The process may bge yerhead of checkpointing [Plank95]. In this technique,
restarted on the same machine (perhaps after a reboot) or Oy programmenselicitly specifies ranges of data that do
a difierent machine (as is done with process pairs) not need to be sad. Memory eclusion can reducever-

[Bartlett81, Gray86]. There are dwmain techniques for
reconstructing the state of ailed process: checkpointing
and log-and-replay [EInozg86].

2.1. Checkpointing

Checkpointing has been used for maryears
[Chandy72, K087] and in mayn systems [Li90, Plank95,
Tannenbaum95, Whg95]. The primary limitation of current
checkpointing systems is thevashead thg impose per
checkpoint. Br example, [Plank95] measures theechead

head dramatically for applications that touch gdsamount
of data that is not needed in rgeoy or is soon deallocated.
However, memory &clusion adds a significanttden to the
programmer using the checkpoint library

2.2. Log-and-Replay

Log-and-replay is another general-purpose veop
technique [Bag89]. Whereas checkpointirgavesthe state
of the failed process, log-and-replagcomputeshe state of
the failed process. Log-and-replay starts from a prior state

of a basic checkpointing system to be 20-159 seconds peL.q rolls the process foand by re-gecuting the instruc-

checkpoint on aariety of scientific applications.ocTamor-
tize this high serhead, todag’ systems tak checkpoints
infrequently For example, the defult intenal between

tions. Re-gecuting the process must use the same inputs
that were used the first time; otherwise the process will not
recover back to the same state iasvin when it crashed.



These inputs are logged before a crash and used duringverhead per checkpoint, which peats them from prod-
recovery. Unfortunately there is a wide ariety of inputs ing failure transparerncfor general applications. Log-and-
that must be logged to rer the process back to the same replay ofers good dilure transparenycby reconstructing
state, and manof these are ditult to log and replayln the state of adfled process to thexact point of the crash.
particular all events that may cause non-determinisie-e However, it is very difficult to use log-and-replay for gen-
cution must be logged and replayed carefully to ensureeral, non-deterministic programs.

repeatability The follaving are @amples of thesevents: The next section describes the design and implementa-
* Message-logging systems focus on logging and replay-tion of a faist checkpointing librarpiscount Checking pro-
ing messages in the original order [Strom8®08&7, vides  fst, synchronous  checkpoints, waling
Johnson87, Bg89, Lomet98]. Input from the user can checkpointing to prade complete dilure transparerycfor
be considered a form of messages. general, non-deterministic programs.
¢ Signals and other asynchronousems are dffcult to 3. Design and Implementation of Discount
log and replaybecause the fefct of these wents may Checking

depend on thexact processonycle the process resed ) ) )
the signal [Slye96]. & this reason, aigon/32 chose to ~ 3.1. Reliable Main Memory and fast Transactions

checkpoint before each signal rather than log gBét. The ley to fast checkpointing is reliable main memory
In general, timing dependencies are dialift input to and fst transactions. Reliable main memory is a form of
log and replay fast, stable storage that can be mapped directly into a pro-

* Thread schedulingvents must be logged and replayed cesss addres_s space. In our pr_oject, we use the reliable main
in the same order to ensure repeatability during the Memory preided by the Rio file cache [Chen96] and the
recosery of multi-threaded applications. Multi-threaded @St transactions pvaled by the Wsta transaction library
applications may also need to log shared-memory [LOWellS7].
accesses between cooperating threads. Like most file caches, Rio caches recently used file

data in main memory to speed up future accesses. Rio seeks

to protect this area of memory from itsctwommon modes

ple, the application couldecute code based on the time ©f failure: paver loss and system crashes. While systems
of day returned by a system call. During nesry, the can protect agnst pever loss in a straightforard manner

system call must return the same time of day to enable tdPY Using a $100 uninterruptible wer supply for exam-
process toxecute the same code. ple), protecting aginst softvare errors is trickierRio uses

With suficient efort, mary of these inputs can be virtual memory p_rotect|on to prent ope_ratmg system
. errors (such as wild stores) from corrupting the file cache
logged and replayed [Elnozg@8]. As eident from the . . ;
. S ; during a system crash. This protection scheme does not
above list, havever, it is no simple matter to track wa, affect performance significanthAfter a crash, Rio writes
log, and replay repeatably all inputs thdeef the roll-for- P 9 '

. the file cache data in memory to disk, a process cakethw
ward phase. & example, [Slye96] required a custom thread . . )
. . i . reboot. In essence, Rio mexkthe memory in the file cache
library and object-code instrumentation to successfully

. . ; persistent. Chen et alenified experimentally that the Rio
track thread schedulingrents and signals. The comyily file cache was as safe as a disk from operating system

of dealing with these and other sources of non-determinism . . S i L

has preented the widespread use of log-and-replay in qrashes. Theersion of Rio used in th|s paper is a modifica-

recovering general applications [Birman96, Huang95] t|c_)n of Freel?;SD .2'2'7' FreeBSD—Rlo_runs on standard PCs
' ' without modifications to the harcwe, firmvare, or proces-

2.3. Comparison of Recweery Techniques sor configuration.

Checkpointing is a more general reeoy technique Vista huilds on the persistent memory pided by Rio
than log-and-replay because checkpointing v&& the  to provide fast transactions [leell97]. Applications use
crashed state and sowidtes the need for reconstructing Vista to allocate areas of persistent memory and perform
state using repeatable reeeution. In other wrds, check-  atomic, durable transactions on that memuista uses se
pointing works for non-deterministic processes, whereas eral optimizations to lwer transaction \eerhead. First, all
log-and-replay must turn non-deterministic processes intodata is stored or logged in Rsa'eliable memorythus elim-
deterministic ones. The main mati for using log-and-  inating all disk I/O for verking sets that fit in main memory
replay instead of checkpointing is its speed for output com-Second, \6ta uses a “force” polic[Haerder83] to update
mit. Logging inputs isdster than current checkpointing sys- the transactional memory eagetiyus eliminating the redo
tems, unless the checkpoint intrvis ‘ery long log and its associated compiky. Third, Mista maps the
[EInozaly94]. transactional memory directly into the address space. This

In summary prior work has preided two general-pur- style of mapping eliminates all systems calls and atieme
pose receery techniques: checkpointing and log-and- memory-to-memory cgp while not hurting reliability
replay Prior checkpointing systems add maseconds of [Ng97]. Fourth, Msta’s simplicity and small code size (700

* The results of mansystem calls must also be logged
and replayed [EInozg®93, Russineich93]. For exam-
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Figure 1: Equivalence of Checkpointing and Tansactions. Transactions and checkpointing arery similar concepts
This figure shars a process taking checkpoints axéaeites. The inteal between checkpoints is egalient to the body of
transaction. @king a checkpoint is equlent to committing the current transaction. After a crash, the state of the prc
rolled back to the last checkpoint; this is emlént to aborting the current transaction. A checkpoint isntddefore use
output to ensure the process nears to a state consistent with that seenxbgreal, non-abortable entities.

lines of C) lead toery short code paths. As a result of these
optimizations, V&ta’s transactions arexeemely fst: small
transactions can complete in unders2

3.2. Transactions and Checkpointing

Although the are rarely discussed together in the lit-
erature, transactions and application checkpointing eme v
similar concepts. Figure 1 she a processxecuting and
taking checkpoints. The same process can beedeas a
series of transactions, where an in&rbetween check-
points is equialent to the body of a transactioraking a
checkpoint is equalent to committing the current transac-

tion. After a crash, the state of the process is rolled back to

the last checkpoint; this is eqalent to aborting the current

transaction. The similarity between transactions and check-

pointing leads naturally to the idea of usingst®’s low-
latengy transactions to Wld a \ery fast checkpointing
library.

3.3. Sa&ing Process State
Building a checkpointing system on a transaction sys-

buffer in the data ggnent. A second i8ta sgment contains
data that is dynamically allocated using malloc. The process
then e&ecutes directly in the ista sgments; memory
instructions directly manipulate persistent memamycon-
trast, other checkpointing librariexezute the process in
volatile memory and cgpthe process state at each check-
point. To rollback after a process crash, Discount Checking
must undo the memory modifications made during the cur-
rent intenal. Vista logs this undo data in Rio using gegn-
write [Appel91] and restores the memory image during
recovery.
A processs address space is easy to checkpoint
because it can be mapped intist¥’s transactional memary
However, a process’ state also includesgister contents,
which can not be mapped into memdpyscount Checking
copies the rgister contents (stack point@rogram counter
general-purpose gésters) at each checkpoint using I&c’
set j np function and logs the oldalues into N&ta's undo
log usingvi st a_set _range.

Some processes can be made verble by check-

tem is Conceptually quite simple: map the process state inthointing 0n|y the address space angimrs_ Havever,

the transactional memory and insert transactioginband
transaction_end calls to makhe interal between check-

making general processes reemble requires gmg mis-
cellaneous state stored in thertel. Discount Checking

points atomic. Discount Checking is a library that can be sa/es the pieces of this state that are required most often.
linked with the application to perform these functions. We occasiona”y need to add other pieces as we use Dis-
There are three main types of process state that must beount Checking for e applications. Our basic stratefor
saved in the transactional memory: address spagestees,  sajing these pieces of state is to intercept system calls that
and lernel state. manipulate the state,\&athe \alues in \ista's memoryand

The hulk of a process' state is stored in the procass’ restore the state during reesy. The folloving are some
address space. When the process starts, Discount Checkingcamples of the types okknel state rea@red by Discount
loads the process’data and stack gments into ‘&ta’s Checking:
transactional memoryt loads the data genent by creating Open files/sockts and file positions Discount
a Msta sgment, initializing it with the current contents of Checking intercepts calls tompen, cl ose, r ead,
the data sgment, and mapping it in placees the original  wrj t e, andl seek to maintain a list of open files and their
data sgment withnmap. To minimize the number ofita file positions. During reary, Discount Checking re-opens
segments, Discount Checking wes the stack into a static  and re-positions these files. Discount Checking also inter-



cepts calls tounl i nk in order to implement the Unix
semantic of delayingnl i nk until the file is closed.

File system operations File system operations such

networks. The duplicatevent can be eliminated if theent
is testable or can be made atomic with the checkpoint
[Gray93]. Otherwise the probability of thevemt being

aswrite update persistent file data. Discount Checking duplicated may be minimized by taking another checkpoint

must undo these operations during kexy just like Msta
undoes operations to the transactional memiaryindo this

right after the eent.
Without the checkpoint before a non-abortablerg,

state, Discount Checking copies the before-image of the filethe process might (1)xecute the non-abortableent, (2)

data to a special undo log and plays it back duringvesgo
Discount Checking does not need to log data when the

crash and rear to an earlier state, (3) &k diferent exe-
cution path due to non-determinism in the program (Section

application &tends a file, because there is no before-image2.2), then (4) not rexecute the non-abortableent. Under

of that part of the file.
Bound soclets Discount Checking intercepts calls to

this scenario, the procesowid recwer to a state that is
inconsistent with the state seen biteenal, non-abortable

bi nd, saves the name of the binding, and re-binds to this entities.

name during reacery.
Connected sockts Discount Checking intercepts

By taking a checkpoint before each non-abortable
event, Discount Checking guaranteeslure transpareryc

calls toconnect , remembers the destination address, and for deterministic and non-deterministic programs. Itas f

uses this address when sending messages.

easier to identify non-abortableents, such as printing to

TCP: Much of the state used to implement the TCP the screen, than to identify and realepeatable all inputs

protocol is in the &rnel. D access this state, we imple-
mented a usdevel TCP library liilt on UDPR Since our
TCP library is part of the process, Discount Checkingsa
its state automaticallyTo support applications that use X
Windows, we modified the X library and servto use our
TCP library

Signals Discount Checking intercepts gact i on,

saves the handler information, and re-installs the handler

during recwoery. Discount Checking also w2s the signal
mask at a checkpoint and restores it duringweigo

Timer: Discount Checking sas the current timer
interval and restores the inteivduring recuery.

Page pmtections Some applications manipulate page

protections to implement functions such asysop-write,
distributed shared memary and @rbage collection
[Appel91]. Msta also uses page protections to ycdipe
before-image of modified pages to its undo loptd/sup-

ports applications that manipulate page protections by inter-

cepting nprotect, saing the applicatiors page
protections, and installing the logical-and aéte’s protec-
tion and the applicatios’protection. When a protection sig-
nal occurs, Yéta invokes the appropriate handler(s).

3.4. Railur e Transparency

In general, preiding complete dilure transparenc
requires a checkpoint just befoneeeuting a non-abortable
event. An &ent that is visible to arxternal entity (such as
printing to the screen) is arxample of a non-abortable
event. Taking a checkpoint right before such aem guar-
antees that thevent is not fogotten in a crash. From the
point of viav of an eternal entity (such as people), the
recovered process returns to the same statet w before
the crash. In the @rst case, the rewered process will re-
execute the non-abortablevenmt. This duplicate vent is
often harmless. ¢t example, applications must already
cope with duplicate messages when using tadayteliable

and non-deterministicvents, as is required by log-and-
replay (Section 2.2).

One aspect of designing Discount Checking is classi-
fying events as abortable or non-abortableeliig such as
printing to the screen must be classified as non-abortable, as
we knav of no easy way to abort a uses’memory Other
events may be considered abortable or non-abortable. F
example, we could consider writing to a file a non-abortable
event and preseevfailure transparerycby taking a check-
point before each file write. k@ver, a faster vay to pre-
sene failure transparenc when files are not shared
concurrently is to mak file writes abortable with an undo
log (Section 3.3) and eliminate the checkpoint.

Sending a message to a non-abortable entity (such as a
display serer) must be considered a non-abortahlene
and hence must induce a checkpoirakiig a checkpoint
for each message send guarantees consistent, utistrib
recosery [Lamport78, Ko87]. If the recefer’s state can be
rolled back, we can consider message sends abortable
events. This requires an atomic commitment protocol (such
as two-phase commit) between the sender andvecei

3.5. Minimizing Memory Copies

As discussed abve, Msta logs the before-image of
memory pages into Rig’reliable memoryVista then uses
this undo log during resery to recoer the memory image
at the time of the last checkpoint. As we will see in Section
5.1, coying memory images to the undo log comprises the
dominant eerhead of checkpointing (cging a 4 KB page
takes about 4@Qus on our platform).

Discount Checking uses\aral techniques to mini-
mize the number of pages that need to be copied to the undo
log. One basic technique is gopn-write. Instead of cop
ing the address space at a checkpoimdtavuses copon-
write to lazily coy only those pages that are modified dur-
ing the ensuing inteal. Copy-on-write is implemented
using the virtual memorg’write protection. On some sys-



tems, system callail when askd to store information ina  segments) wuld suddenly change when the undo loasw
protected page. Discount Checking intercepts these systenplayed back during igta’s recwery procedure. Instead, we
calls and predults the page before making the system call. want ista to manually reaer its avn variables, as it does
Discount Checking reduces the number of stack pages thatwvhen not running with Discount Checking. Onaywto
need to be copied by not write-protecting the portion of the view this is that a rea@ry system may reger client \ari-

stack that is unused at the time of the checkpoint. ables automaticallybut it cannot use itself to reeer its
Discount Checking must takspecia| steps to use own variables. © fix the problem, Discount Checking
Cow-on-write on stack pages, because/elai write pro- moves \sta’s global wariables to a portion of the address

tecting the stack renders the system incapable of handlingsPace that is not regered by \sta. This vas done by mo
write-protection signals (detering the signal generates ing Vista's global ariables to the ggnent that is not logged
another write-protection signal)oTesole this conflict, we  Via copy-on-write, and not copng the \ariables to the undo
use BSDs si gal t st ack system call to specify an alter- 10g. Vista does not modify thesenables during reae@ry
nate stack on which to handle signals. The signal-handlingbecause there are no undo images for them.

stack is neer write protected; inst_ead, it_s aetiportion is 4. Using Discount Checking

logged eagerly during a checkpoint. This eagely cagids
very little overhead, because (1) the signal stack contains
data only when the checkpoint occurs in a signal handler
and (2) the signal stack is usually nety deep een when
handling a signal.

In addition to the signal stack, Discount Checking
stores most of itsven global \ariables in a \éta sgment

Checkpointing libraries prade a substrate for easily
making general applications reewable. It should be much
simpler to handle resery using a checkpointing library
than by writing custom resery code for each meapplica-
tion. Towards this goal, Discount Checking requires only
two minor source modifications to most programs. First, the

; : ) ) program must includec. h in the module that contains
that is not logged using copon-write. These ariables mai n. Second, the program must addl_i ni t as the first

include the rgister contents at the last checkpoint, signal o ocutable line immai n. dc init loads the program into
mask, list of open files, and satlstate. Discount Checking  \sista's transactional memarynwes the stack, and starts
copies theseariables to the undo log as needed, rather thany, first checkpoint inteal.dc_i ni t takes seeral param-
using cog-on-write to coy the entire page containing @ gters; the most important of which is the file name to use
variable. when storing checkpoint data. After making these tw
As a result of these optimizations, Discount Checking Changes’ the programmer S|mp|y links wlithbdc. a and
can coy very little data per checkpoint. The minimum runs the resulting»@cutable. Discount Checking currently
checkpoint size is 4360 bytes: a 4 KB page for the currentrequires the xecutable to be lirdd statically to mak it
stack frame, plus 264 bytes fogisters and some of Dis-  easy to locate theavious areas of the processiddress

count Checking internal data. space.
3.6. \ista-Specific Issues As discussed in Section 3.4, Discount Checking inserts
Discount Checking benefits substantially hyilding checkpoints automatically before non-abortalvents such

on Vista's transactional memaryhe standard ista library @S printing to the screen. Discount Checking also restarts
provides much of the basic functionality needed in check- With little user interention: the user simply rexiokes the
pointing. For example, \ista pravides a call i st a_map) program. Wherdc_! nitis ca]lgd, it notices that there is
to create a ggnent and map it to a specified addregstay ~ a@n &isting checkpoint file and. initiates raeoy. The reco-
provides the ability to use cgpon-write or aplicit copies €y procedure restores thegisiers, memoryand lernel
to copy data into the undo log, andsta recwers the state ~ State at the time of the last checkpoint, then resunesie
of memory by playing back the undo logst also supplies ~ tion from the last gheckpomt. From the_ L_lsepbmt of. viev,
primitives (i sta_mal | oc, vi sta_free) to allocate _the program has simply pausec_i—no VISIb|e. state is lost dur-
and deallocate data in a persistent heap; Discount Checkind'd @ crash. The program also is waze that it has crashed,
transforms calls toral | oc/ f r ee into these primities. as it simply resumescecution from the last checkpoint.
Vista provides the ability to group together modifications to We e&pect most programmers to rest happily while
several sgments into a single, atomic transaction by using a Discount Checking transparently checkpoints andverso
shared undo log. their program. Hwever, some may want to &tend the

For the most part, Discount Checking required no checkpointing library or play a more direct role during
modifications to ¥sta. The solex@eption relates toigta’s ~ recovery. For these adanced uses, Discount Checking
global \ariables. Becauseidta is a libraryit resides in the ~ allows the programmer to specify a function to run during
applications address space. Our first implementation of "écovery (e.g. to perform application-specific checks on its
Discount Checking usedista to recwer the entire address ~data structures). Discount Checking also vadicthe pro-
space, including Mta's ovn global \ariables! Conse- grammer to specify a function to run before each check-

quently Vista's global \ariables (such as the list ofista point.



Processor
L1 Cache Size
L2 Cache Size

Motherboard

Memory

Network Card

Pentium Il (400 MHz)
16 KB instruction / 16 KB data
512 KB
Acer AX6B (Intel 440 BX)
128 MB (100 MHz SDRAM)
Intel EtherExpress Pro 10/100E
100 Mb/s switched Ethernet

Network (Intel Express 10/1004st
Ethernet Switch)
. IBM Ultrastar DCAS-34330W
Disk

(ultra-wide SCSI)
Table 1: Experimental Platrm.

To summarize, Discount Checking lets a programmer
write an application that modifies persistent data, without
having to worry about a myriad of compteecorery issues.
Once the application evks, the programmer can neakt
recoverable easily by linking it with Discount Checking and
making two minor source modifications.

5. Performance Ewaluation

Our goal is to use checkpointing to reeo general
applications with completeaflure transparernc The feasi-
bility of this goal hinges on the speed of Discount Checking,
particularly during &ilure-free gecution. In this section, we
measure thewerhead added by Discount Checking for a
variety of applications.

We first use a microbenchmark to quantify the rela-
tionship between checkpoint@erhead and wrking set size.
We then describe our suite of test applications andwtbe o
head needed to makhem receerable. Last, wexplore the
relationship between checkpoint intehand @erhead for
two programs from SPEC CINT95.

Table 1 describes the computing platform for all our
experiments. Br all data points, we takfive measurements,
discard the high and Wy and present thevarage of the
middle three points. Standardvitgions for all data points
is less than 1% of the mean.

5.1. Microbenchmark
Copying memory pages toista’s undo log comprises
the dominant eerhead of checkpointing. Figure 2 slsthe

relationship between the number of bytes touched per

checkpoint interal and the werhead incurred per inteal

The program used to generate this data is a simple loop
where each loop iteration touches the specified number o

bytes, then tads a checkpoint.

The minimum @erhead is 5Qus per checkpoint. This
overhead is achied when touching a single 4 KB page per
checkpoint (for gample, as might be done by a program
operating only on the stack). Agpected, checkpointver-

head increases linearly with the number of bytes touched.

100

T T T
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[E=Y
o

[EEY
T
cnl

0.10

Checkpoint Overhead (ms)

0.01 el il
1 KB 10KB 100KB 1MB 10 MB
Bytes Touched per Checkpoint

Figure 2 Checkpoint Overhead for Micr obenchmark.
Checkpoint gerhead is proportional to the number
pages touched per checkpoint. Each 4 KB pages!
approximately 451s to handle the write-protection sigr
and cop the page to Mta's in-memory undo log (3@s for
working sets that fit in the L2 cache).

Each 4 KB page tas 45us to handle the write protection
signal and cop the before-image to ista’s in-memory
undo log (32us for working sets that fit in the L2 cache).
For example, a program that touches 1 MB of data during an
interval will see 12 ms werhead per checkpoint. Prior
checkpointing libraries incur mgrseconds oferhead per
checkpoint, so Discount Checking is thousands of times
faster than these librariesem for programs that touch a
large amount of data per intev

In general, there is no fix relationship between abso-
lute overhead (seconds) and relatioverhead (fraction of
execution time). Real programs that touch géaramount
of data in an intema are lilely to spend more time comput-
ing on that data than programs that touch only a small
amount of data. Hence their checkpointinead will be
amortized ger a longer period of time. The maiacfor
determining relatie overhead is localityPrograms that per-
form more vork per touched page will tia lowver relatve
overhead than programs that touch gnpages without per-
forming much verk.

5.2. Applications
We use four benchmarks to measurev discount
Checking dkects performance on real applications:,
magi ¢, ol eo, andr ogue. vi is one of the earlier xé
ditors for Unix. The ersion we use iavi . magi ¢ is a
LSI layout editor ol eo is a spreadsheet program.
rogue is a gme that simulates an ahture through a
dungeon.
Vi, ol eo, andr ogue are full-screen t& programs
that manipulate the terminal state through the ses
library. To recaver the terminal state after a crash, we spec-



Program Running Time 4 of Size of Undo Log
0]
Name Type Original g;}seccok?:; Overhead || Checkpoints | average| Max
Vi editor 881.90sec | 882.76 sec 0.1% 7940 74 KB 144 KB
magi ¢ CAD 89.54 sec 90.04 sec 0.6% 208 126 KB 734 KB
ol eo spreadsheet 57.91 sec 58.02 sec 0.2% 396 94 KB 123 KB
rogue game 16.51 sec 16.58 sec 0.4% 231 49 KB 82 KB

Table 2: Application Overhead. Discount Checking addsewy little run-time or memorywerhead in making progran
recoverable, yet it preides completesailure transparerycby not losing ayn visible state after a crash.

ify a user receery function when callinglc_i ni t. The
recovery function is six lines otur ses function calls.
These six lines and the call tic_i nit are the only
changes required to maki , ol eo, andr ogue recover-
able with Discount Checkingmagi ¢ is an X11-based
application and communicates with the X sgrusing mes-
sages. @ provide failure transpareryg Discount Checking

cations (at most 0.6%). Asxpected, the bottleneck for
interactve applications is the useEven with interactie

input rates, haever, prior checkpointing libraries ould

have slaved these applications by actor of 10-100 to
achieve completedilure transparernyc A unique strength of
Discount Checking is its ability to reeer general-purpose,
interactve applications—this is one of thedat classes of

intercepts message sends and checkpoints before communapplications for our ark.

cating with the X semr. Other than the call tdc_i ni t,
no changes were needednmgi ¢ to use Discount Check-
ing.

Conducting performance measurements of intemcti
programs requires some care to aohieepeatable results.
We male the runs repeatable by playing back input from a
log file instead of the terminaloFvi , ol eo, andr ogue,
we simulate aery fast typist by delaying 100 ms each time
the programs asks for a character magi ¢, we delay 1
second between mouse-generated commandsusd this
type of delay instead of fixing the interaai time between
characters because it moaatlifully simulates real interac-
tion; typists often it for the output from the lasekstroke
before typing the né keystroke. This type of delay also
presents a pessimistic weof checkpointing werhead
because checkpoinwverhead is neer overlapped with the
delay Fixing the interarxial time between characteroud
allow some of the checkpoinverhead (and other computa-
tion) to be hidden in the 100 ms interaafitime. Note that
we measure performance using an input rate masterf
than people can interact with the progranithieal human
interaction, the relate overhead added by Discount Check-
ing would be &en lower.

For vi , we replay the &ystrokes used when writing
the introduction to this papeFor magi ¢, we replay the
commands used to layout a simpleerier For ol eo, we
replay the kystrokes used to create thedyget for a grant
proposal. Brr ogue, we replay the éystroles used to na
igate through one \el of the dungeon.

Table 2 shars the @erhead added by Discount Check-
ing in terms of running time and memory usage. Discount
Checking adds mgigible run-time @erhead for these appli-

Discount Checking usesxtta memory to store the
undo log. Bble 2 shws the &erage and maximum size
used by the undo log, whergesiage refers to thevarage
size of the undo log at the end of a checkpoint ialeivhe
extra memory used by Discount Checking for these applica-
tions is usually only 100 KB.

Besides adding little v@rhead to dilure-free opera-
tion, Discount Checking also re@rs \ery quickly
Because there is no roll-foard during receery, Discount
Checking is able to rewger these programs in a fraction of a
second.

5.3. \arying the Checkpoint Interval

We next measure he Discount Checking performs for
different checkpoint inteals. The benchmarks we use are
non-interactte computations from SPEC CINT95. Prior
checkpointing research has focused on these types of appli-
cations because th@enerate little output and hence require
very few checkpoints for dilure transparenyc We use
i j peg andnB8ksi m other benchmarks in the SPEC95
suite gve similar results. The only modification needed to
male these reaerable with Discount Checkingas the
calltodc_i ni t (and the accompamg #i ncl ude).

Figure 3 graphs the rele¢i overhead incurred as a
function of checkpoint inteal. For these programs, e
checkpoints are required foaifure transparerycbecause
they produce wery little output. Instead, we use periodic
timer signals to trigger checkpoints atrying intenals. As
expected, relatie overhead drops as checkpoints arestak
more frequently At very short checkpoint inteals, oer-
head remains relagly constant because lengthening the
interval increases the amount of bytes logged in the iaterv
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Figure 3: Checkpoint Owrhead r Varying Intervals. We usei j peg andnB8ksi mto measure hw the interal of
checkpointing décts werhead. As checkpoints are éakless frequentlyhe relatie overhead drops and the size of the u
log generally increases. Checkpointing adds littlerbead een at high rates of checkpointing.

In other words, the wrking set of these applications is pro-
portional to interal length for short interls, then increases
more slavly for longer interals.

The intenal used in prior checkpointing studies has

of checkpoints is not needed for these applications,itb
senes to demonstrate the speed of Discount Checking on a
wider range of applications. Other SPEC benchmaais g
similar results, with werhead ranging from 0-10% with a 1

ranged from 2-30 minutes for these types of applications.second checkpoint inteal:

Discount Checking is able to &kheckpointswery second
while adding only 6-10%werhead. Such a high frequgnc

Figure 3 also shwes hav the aerage and maximum
size of the undo logaries as a function of checkpoint inter-



val. As checkpoints become less frequent, the size of the7, Future Work

undo log generally increases because more data is being  \\e are gploring more fully hev fast checkpoints
logged during longer intea¥s.i j peg shaws a deiation  gaffect distrituted recwery. For example, &ist checkpoints
from this general trend, where the undo log siEnwially  remose the main bottleneck (writing to stable storage) in
shrinks for longer checkpoint inteie. This occurs because  a|gorithms used in distrited transactions and coordinated

of how Vista handles memory allocation within a transac- checkpointing, such as taphase commit [Gray78]. As

tion [Lowell97]. Vista deferd r ee operations until the end  mentioned in section ast checkpoints also malpractical

of the transaction unless the correspondimg | oc was gy algorithms in distribted recoery. For example, taking
performed in the current transaction. Hence, longer iaerv = 4 checkpoint before sending each message guarantees glo-

6. Contributions [Koo87]. With fast checkpoints, these schemes/jai® low-
This paper maks a number of contriions to rece- overhead reoeery for general-purpose, distuted applica-
tions.

ery research.

First, we shar how to kuild a fast checkpointing sys-
tem from reliable memory andsdt transactions. Discount
Checkings checkpoints typically takbetween 5@is and a
few milliseconds to complete, much less time than theyman
seconds of werhead traditional checkpoints incur

Micro and millisecond checkpoints are important not
just because tlyespeed up resmrable applications. dst
checkpoints enable reeery techniques that euld be
impractical with classical checkpointsor-example, with
fast checkpoints it becomes feasible to vecdlistrituted
systems by taking a checkpoint befovery message send.

Fast checkpoints alsaxpand the domain of applica- .
tions that can use checkpointingrfexample, as we sho 8- Conclusions
in this paperfast checkpoints can be used to makerac- This paper has presented a checkpointing system that
tive applications transparently reeoable with lov over- is built on reliable main memory and high-speed transac-
head. Programs with lots of human interaction are some oftions. Discount Checking can be used to engkneral-pur-
the most deserving of strong reeoy properties, as human pose applications regerable easily and withwoverhead.

We are also consideringays to receer from hugs
that violate the dil-stop model [Schneider84, Chandra98,
Chandra99]. Programs with such @gbmay run for a long
time after the bg is actvated. V¢ knawv of no current recs
ery system that can reger from such a g, because the
corruption caused by theip may be preseed in the rece-
ery data (checkpoint or log). Oneawto recoer from these
bugs is to kep a number of past checkpoints and roll back
more than one checkpoint until before thig vas actvated
[Wang93]. Most hgs in production systems are triggered
by non-deterministic vents (so-called Heisenbs)
[Gray86] and may not occur aig after receery.

labor is dificult and painful to rehild. Unfortunately tradi- The checkpoints tak by Discount Checking areteemely
tional checkpoints he been too sie to provide failure fast, taking between 505 and 2 milliseconds for our tgt
transparengfor interactve applications. applications.

Another of our contribtions is to focus this research Discount checking stres to be transparent in three

on checkpointing general applications, for which numerous important vays. Its performance is transparent—users are
system calls and plentifueknel state are the norm. In con- unavare of a 0.6% performancegtadation. It mags il-
trast, classical checkpointing research has focused on takingires transparent—very single update to the usedisplay
checkpoints in scientific compuations. Scientific computa- is recaered. Finally it is transparent to the programmer—
tions are concerned mainly with computing mathematical applications need only twsmall source code modifications
results and as such donmesystem calls, and ki@ minimal to be made reserable.

kernel sta_te. As a result, checkpointing systengetad for 9. Software Availability

such applications need not bery general.

Furthermore, we shwit is possible to duplicate diif
cient lernel state outside thesiknel to enable full process
checkpointing at uservel—even for applications thatxe-
cute a wide ariety of system calls. 10. Acknowledgments

Finally, we illustrate an important use for reliable We owe thanks to Gege Dunlap for adding support
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being made res@rable, and for which traditional stable hachandra Chandra) contiied in discussions and dep
storage and transactions are toaslo ging sessions during the design and implementation of

Discount Checking.
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