
Low-Cost Embedded Program Loop Caching - Revisited

Lea Hwang Lee , Bill Moyer*, John Arends*

Advanced Computer Architecture Lab
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122
leahwang@eecs.umich.edu

M•CORE Technology Center*
Motorola, Inc.

P.O. Box 6000, MD TX77/F51
Austin TX 78762-6000

{billm,arends}@lakewood.sps.mot.com

Abstract

Many portable and embedded applications are characterized by spending a large
fraction of their execution time on small program loops. In these applications, in-
struction fetch energy can be reduced by using a small instruction cache when exe-
cuting these tight loops. Recent work has shown that it is possible to use a small
instruction cache without incurring any performance penality [4, 6]. In this paper,
we will extend the work done in [6]. In the modified loop caching scheme proposed
in this paper, when a program loop is larger than the loop cache size, the loop cache
is capable of capturing only part of the program loop without having any cache con-
flict problem. For a given loop cache size, our loop caching scheme can reduce in-
struction fetch energy more than other loop cache schemes previously proposed.
We will present some quantitative results on how much power can be saved on an
integrated embedded design using this scheme.

†

†

December 18th, 1999

ir exe-
ed by

uested
e cycle

into a
k the
that is

PC is
PC is
instruc-
ks will

fied in
inating

he and
perfor-

he set
ld of a
he access
o line

access
t in the
1 Introduction and Related Work

Many portable and embedded applications are characterized by spending a large fraction of the
cution time on small program loops. In these applications, instruction fetch energy can be reduc
using a small instruction buffer (also call aloop cache) when executing these tight loops [2,5,12, etc.].

Using this approach, however, may incur cycle penalties due to instruction buffer misses (the req
instructions are not found in the buffer). Another approach is to operate the main cache in the sam
only if there is a buffer miss, possibly at the expense of a longer cycle time.

1.1 Compiler Assisted Loop Caching Scheme

In [3], Bellas et. al. proposed using a compiler to select and place frequently used basic blocks
region of code by using profile information. In this approach, a special instruction is used to mar
boundary between the portion of code that is to be cached in the loop cache and the portion of code
not. The address of this boundary is loaded into a 32-bit register by the run-time hardware. If the
less than this address, the loop cache is probed to determined if there is a loop cache hit. If the
greater than this address, the loop cache is by-passed and the request is sent directly to the main
tion cache. In this approach, a loop cache miss due to a conflict between two selected basic bloc
incur a cycle penalty [3].

1.2 Special Loop Instructions

Several commercial ISA use special loop instructions to execute program loops [1,13,14]. Speci
these instructions are the loop size, the register that is used as a loop counter, and the loop term
condition. When a loop is encountered, the hardware can load the program loop into a loop cac
start using the loop cache for loop executions. In these systems, loop caches are used without any
mance penalty.

1.3 Multiple Cache Line Buffering

In [4], multiple line buffers are used. Each of these line buffers has a set number tag, storing t
number field of the address associated with the cache line stored in the buffer. If the set number fie
requested address matches one of these set number tags, the associated line buffer is read and t
to the cache array is aborted. Figure 1 shows the cache organization using this technique with tw
buffers [4]. In this approach, there is no cycle penalty nor cycle time degradation, provided that an
to the cache array can be aborted in time after it is determined that the requested instruction is no
line buffers.

=?

W
or

d
lin

e
de

co
de

Tag Data

=?

Address

=?

Line
buffers

Datahit/miss

Abort

Set
number

Tag

set numbers

Figure 1: Multiple cache line buffering
2

oes not
no valid

rticular
ermore,
ad of

ondi-
p con-
le by

ing a
useful

r core.
buffer
1.4 Counter-Based Loop Caching Scheme

In [6], a counter-based loop caching scheme was proposed. In this scheme, the loop cache d
have an address tag. The loop cache array can be implemented as a direct mapped array. There is
bit associated with each loop cache entry. A program loop does not need to be aligned to any pa
address boundary. The software is allowed to place a loop at any arbitrary starting address. Furth
the loop cache controller knows whether the next instruction will hit in the loop cache, well ahe
time. As a result, no performance degradation is incurred.

In this loop caching scheme, no special instruction is needed for loop executions. Any regular c
tional or unconditional branch instructions can be used to construct a program loop. Program loo
structions, in this case, are more flexible (a wide variety of terminating conditions is made availab
choosing from different flavors of branches available in the ISA). By eliminating the need for defin
special loop instruction, this technique also preserves some valuable opcode space for other
instructions.

Figure 2 shows the loop cache organization using this technique with a cache size of 2c instructions.
The loop cache size used in [6], is about 32 to 64 bytes.

The low area cost associated with this scheme offers tight integration solution into the processo
Figure 3 shows an example of a counter-based loop cache being integrated into an instruction
inside the processor core.

de
co

de

Loop cache
Address

Data

xxx
Index

Figure 2: Loop Cache Organization

2c
instructionsc

Instruction Cache

MMU

Processor Core

Core

Unit (CIU)
Interface Data bus

Address bus

Inst. Addr
Generation
Unit (AGU)

Inst. Buffer

Loop cache

Figure 3: An Embedded Microcontroller System

or Unified Cache

Tag Array

array (LCA)

(microcontroller)
3

loop,
eration.
e unit
instruc-

d in
pturing
e, our
viously

ws that
che is
in the

or

e can

ed loop
ow the

fferent
es the
n 5 and
ing this

o, in
”. We
Compared to the Multiple Line Buffering approach proposed in [4], when executing a program
this scheme does not exercise any hardware that is associated with the instruction address gen
These hardware include the instruction address generation unit (AGU), processor core interfac
(CIU) and the instruction address bus (see Figure 3). Furthermore, this scheme does not access
tion tag memory nor perform any tag compare

In this work, we will extend the work done in [6]. In the modified loop caching scheme propose
this work, when a program loop is larger then the loop cache size, the loop cache is capable of ca
only part of the program loop without having any cache conflict problem. For a given loop cache siz
caching scheme can reduce instruction fetch energy more than other loop caching schemes pre
proposed.

Figure 4 shows a scenario where the program loop size is larger than the loop cache size. It sho
only part of the program loop is being captured in the loop cache. Depending on how the loop ca
filled up, either the upper part of the program loop or the lower part of the program loop is captured

loop cache. Thus a loop cache size of 2c instructions, can not only capture all the loops that are equal to

smaller than 2c instructions, it can also capture a portion of all the larger loops. In the latter case, w

achieve a loop cache hit rate of 2c instruction references per iteration.

The rest of this paper is organized as follows. Section 2 describes the extended counter bas
caching scheme based on [6]. It describes the implementation of the loop cache controllers and h
hardware monitors the program loop execution. Section 3 describes the implementation of two di
loop cache fill strategies, namely, the cold-fill strategy and the warm-fill strategy. Section 4 describ
benchmark suite used in this study and some branch characteristics of these benchmarks. Sectio
Section 6 give some experimental results and quantify how much power saving can be achieved us
scheme. Section 8 summarizes this paper.

Without loss of generality, we will assume, in this paper, that each instruction is 2 byte long. Als
this paper, we will refer to the main instruction cache, whether split or unified, as the “main Icache
will denote the size of the program loop as LS, in number of instructions in the loop.

Program loop Loop cache

Loop
Program
loop size

cache
size, 2c

(a) Upper part of the program loop is being captured

2c instructions

Program loop

Loop cache

Loop
Program
loop size

cache
size, 2c

(b) Lower part of the program loop is being captured

Figure 4: Program loop size is larger than the loop cache size

are captured

2c instructions
are captured
4

on of

ion in
e can
ation.

che is
loca-

termine
Sec-

-
al or
ll ones
2 Counter Based Program Loop Caching

Consider Example 1 shown above. A loop contains n instructions (i.e. LS=n). The last instructi
the loop is a backward branch instruction, br, with target L1.

2.1 Loop Cache Organization

Figure 2 shows the organization of a 2c-entry loop cache, for some integerc. When the size of the pro-

gram loop being captured is smaller than or equal to the loop cache size (LS 2c), the entire loop is cap-
tured. In this case, indexing into the loop cache is unique and non-conflicting. That is: (i) an instruct
the program loop will always be mapped to a unique location in the loop cache array; and (ii) ther
never be more than one instruction from a given program loop to compete for a particular cache loc

When the size of the program loop being captured is larger than the loop cache size (LS > 2c), then
only part of the program loop is captured in the loop cache. In this case, indexing into the loop ca
unique but can be conflicting. That is, multiple instructions in the loop can be mapped into the same
tion in the loop cache. Thus when accessing the loop cache, additional hardware is needed to de
which part of the program loop is actually stored in the loop cache. We will describe this further in
tion 3.

2.2 Short Backward Branch Instruction

The notion of ashort backward branch instruction(sbb) was introduced in [6]. A sbb is any PC-rela
tive branch instruction that fits the instruction format shown in Figure 5(a). It can be condition
unconditional. A sbb has negative branch displacement, with its upper displacement field that is a
and its lower displacement field that isw-bit wide, where .

Example 1
L1:
A0 I0
A1 I1
A2 I2 Loop body

:
An-2 In-2
An-1 br L1 // branch

≤

w c≥

opcode 1 1 1 1 X X . . . X X

upper displacement (ud) lower displacement (ld)

w bit

branch displacement
(a) sbb instruction format

lower displacement (ld)

x y
c bit

(b) Further division of lower displacement field

w-c bit

Figure 5: sbb Instruction Format
5

aller
ram

that the
e. The

ss, we

con-
ch a
r-
e loop

s the
per-

coun-

h dis-
ction is
ting the

knows
The lower displacement field,ld, can be further divided into two fields: x field (w-c bit wide) and y

field (c bit wide). By definition, the maximum backward branch distance of a sbb is 2w instructions. Thus

the maximum program loop size that can be recognized by the hardware is 2w instructions. Since ,

this maximum loop size can be larger than the loop cache size. The latter is given by 2c instructions. Fur-
thermore,if the x field of the sbb are all ones, it indicates that the program loop size is equal to or sm
than the loop cache size. Conversely, if the x field of the sbb are not all ones, it indicates that the prog
loop size is larger than loop cache size. For the case wherew=c, this work degenerates into those in [6].

When a sbb is detected in an instruction stream and found to be taken, the hardware assumes
program is executing a loop and initiates all the appropriate control actions to utilize the loop cach
sbb that triggers this transition is called thetriggering sbb [6].

2.3 Monitoring the sbb Executions

In [6], a scheme for monitoring the sbb executions was proposed. For the sake of completene
will describe this monitoring scheme in this Section.

In order to determine in advance, whether the next instruction fetch will hit in the loop cache, the
troller needs the following information on a cycle-to-cycle basis: (a) is the next instruction fet
sequential fetch or is there achange of control flow(cof)? (b) if there is a cof, is it caused by the trigge
ing sbb? (c) is the loop cache completely warmed up with the program loop so we could access th
cache instead of the main cache?

Information pertaining to (a) can be easily obtained from the instruction decode unit as well a
fetch and branch unit in the pipeline. In Section 3, we will describe how we could obtain information
taining to (c).

A counter could be used to obtain information pertaining to (b). In this scheme, when a sbb is en
tered and taken, its lower displacement field,ld, is loaded into aw-bit increment counter called
loop_count(see Figure 6). The hardware then infers the size of the program loop from this branc
placement field. It does so by incrementing this negative displacement by one, each time an instru
executed sequentially. When the counter becomes zero, the hardware knows that we are execu
triggering sbb. If the triggering sbb is taken again, the increment counter is re-initialized with theld field
from the sbb, and the process described above repeats itself. Using this scheme, the controller
whether a cof is caused by the triggering sbb, by examining the value ofloop_count [6].

w c≥

Loop_Count_Reg

+1

Lower displacement field,ld (from IR)

Comparator
0

executing the triggering sbb

w

w

w

w

Increment
Counter

loop_count

load

Figure 6: A Counter To Monitor sbb Executions
6

che fill

ries to

by the
l only

after
ache
an the
larger
e or all

he for

s will

rs the
ing
3 Cache Fill Strategies

Depending on how a program loop is being captured and stored in the loop cache, two loop ca
strategies are identified: (i)Cold-Fill Strategy; and (ii)Warm-Fill Strategy.

In the cold-fill strategy, the loop cache controller will only try to fill up the loop cacheafter it is con-
firmed that we are executing a program loop.

In the warm-fill strategy, the loop cache controller fills up the loop cache whenever possible and t
keep the loop cache warm at all times.

If the program loop is smaller than the loop cache size, the entire program loop will be captured
loop cache. However, if the program loop is larger than the loop cache size, the cold-fill strategy wil
capture theupper partof the loop (Figure 4(a)); while the warm-fill strategy will only capture thelower
part of the loop (Figure 4(b)).

3.1 Cold-Fill Strategy

In the cold-fill strategy, the controller begins to fill up the loop cache during the second iteration,
the sbb of the first iteration is taken. During the second iteration, the controller fills up the loop c
either until the entire loop is captured (for the case where the program loop is equal to or smaller th
loop cache size) or until the loop cache is completely full (for the case where the program loop is
than the loop cache size). From the third and subsequent iterations, the controller then directs som
of the instruction fetches to the loop cache.

If the program loop is larger than the loop cache size, the controller will only access the loop cac

the first 2c instructions of the program loop. For the rest of the program loop, all instruction accesse
be directed towards the main Icache directly, bypassing the loop cache.

A state diagram for the loop cache controller using cold-fill strategy is shown in Figure 7 [6].

The controller starts off with an IDLE state. When a sbb is decoded and taken, the controller ente
FILL state. While in the FILL state, the controller fills up the loop cache with all the instructions be

Figure 7: Loop cache controller with cold-fill strategy

sbb detected and taken
(triggering sbb not taken) ||
(cof that is not caused by the triggering sbb)

ACTIVE

((no cof) ||

cof that is caused by the triggering sbb

(triggering sbb not taken) ||
(cof that is not caused by the triggering sbb)

no cof
(cof that is caused by the triggering sbb))

(the sbb becomes the triggering sbb)

FILL

IDLE

no sbb detected and taken

(2nd iteration)(3rd iteration and beyond)
7

hile
ate:
trig-

tate.
the
used

er of
, called
g

y one
ease
y

Icache

ng all
that

op is
ration.

ed
s reset

uction
fetched from the main Icache, either until the entire loop is captured or until the loop cache is full. W
in the FILL state, one of the following two conditions will cause the controller to return to the IDLE st
(i) the triggering sbb is not taken; or (ii) there is a cof within the loop body that is not caused by the
gering sbb.

While in the FILL state, if the triggering sbb is taken again, the controller then enters an ACTIVE s
While in the ACTIVE state, one of the following two conditions will cause the controller to return to
IDLE state: (i) the triggering sbb is not taken; or (ii) there is a cof within the loop body that is not ca
by the triggering sbb.

To monitor the number of instructions filled in the loop cache during the FILL state, and the numb
instructions accessed from the loop cache during ACTIVE state, a dual purpose saturating counter
inst_count, can be used. This counter isc-bit wide. This is in addition to the counter used for monitorin
the sbb executions, shown in Figure 6.

The inst_countcounter is reset to zero each time the triggering sbb is taken and is incremented b
for each sequential instruction requested. While in the FILL state, the loop cache fill activities will c
when the triggering sbb is taken again, or wheninst_countsaturates, indicating that we have alread

fetched 2c instructions.
While in the ACTIVE state, all instruction requests will be directed to the loop cache, unlessinst_count

saturates. In the latter case, all the subsequent instruction requests will be directed to the main
directly.

If a program loop size is smaller than the loop cache size, indicated by the “x” field of the sbb bei
ones (see Figure 5), then theinst_countcounter needs not be exercised at all during the execution of
loop.

3.2 Warm-Fill Strategy

In the warm-fill strategy, after the sbb of the first iteration is taken, some or all of the program lo
already captured in the loop cache. The loop cache can be accessed starting from the second ite

Similar to its cold-fill counterpart, an additional counter, called theinst_count, is used. This counter is
w-bit wide. While in the FILL state,inst_countkeeps track of the number of instructions being captur
into the loop cache. It is incremented by one for each instruction being captured sequentially and i
to zero when a sbb is detected and taken. While in the ACTIVE state,inst_countkeeps track of the num-
ber of instructions being requested by the execution pipeline. It is incremented by one for each instr
being requested sequentially and is reset to zero when the triggering sbb is taken
8

l the
L
if a

.

ram
an the
ual to

to
not

ects all
where

t to the

by

sur-
sts will
.

A state machine for the loop cache controller using warm-fill strategy is shown in Figure 8. Al
update actions forinst_countcounter are marked in Figure 8 as “*”. The controller starts off with a FIL
state. While in the FILL state, the controller tries to fill up the loop cache. While in the FILL state,

sbb is detected and found to be taken andinst_count min(LS,2c), the controller enters an ACTIVE state

Otherwise, it remains in the FILL state. The conditioninst_count min(LS,2c) guarantees that one of the
following two conditions holds true before the controller enters the ACTIVE state: (i) the entire prog
loop is being captured by the loop cache (for the case where the program loop size is smaller th
loop cache size); or (ii) loop cache is completely full (for the case where the program loop size is eq
or larger than the loop cache size).

While in the ACTIVE state, one of the following two conditions will cause the controller to return
the FILL state: (i) the triggering sbb is not taken; or (ii) there is a cof within the loop body that is
caused by the triggering sbb.

For the case where the program loop size is smaller than the loop cache size, the controller dir
instruction requests to the loop cache, immediately starting from the second iteration. For the case
the program loop size is larger than the loop cache size, the controller directs an instruction reques

loop cache only ifinst_count> LS-2c. The size of the un-captured upper portion of the loop is given

LS-2c. Condition inst_count> LS-2c indicates that the number of instructions being requested has
passed the size of the upper portion of the program loop. From that point on, all subsequent reque
hit in the loop cache.

Figure 8: Loop cache controller with warm-fill strategy

FILL

* inst_count++

(cof that is not caused by a sbb) ||

* inst_count = 0

(sbb detected and taken)

no cof

no cof

(cof that is not caused by triggering sbb)
(triggering sbb not taken) ||

&&
(inst_count >= min(LS,2c))

((sbb detected and taken) && (inst_count < min(LS,2c)))

* inst_count = 0

* inst_count = 0

cof that is caused by the triggering sbb

ACTIVE

* inst_count++

* inst_count = 0

≥

≥

9

g, auto-
ench-

on-
ondi-
mory

inately
nstruct

effec-
erfor-

s
erences
4 Benchmarks

The benchmark suite used in this study, called the Powerstone benchmark suite, includes pagin
mobile control, signal processing, imaging, and fax applications. It is detailed in Table 1. These b

marks are compiled to the M•CORETM ISA using the Diab 4.2.2 compiler.
The M•CORE ISA has a fixed 16-bit instruction format [11]. In this ISA, all conditional change of c

trol flow instructions are PC-relative, each with an offset specified in the branch instruction. Unc
tional cof instructions can be PC-relative, jump register indirect, or jump indirect through a me
location.

These benchmarks exhibit significant tight loop structures. The sizes of these loops are predom
less than 16 instructions. Furthermore, PC-relative branch instructions are extensively used to co
these tight loops[6].

5 Main Instruction Cache Access Rates

Instruction level simulations were performed using the Powerstone benchmarks to quantify the
tiveness of our loop caching technique. As mentioned earlier, there is no cycle count penalty nor p
mance degradation associated with this technique.

We define themain instruction cache access rates(MCAR) as the number of instruction reference
made to the main Icache when using a loop cache, as a percentage of number of instruction ref

Table 1: Powerstone benchmark suite

Benchmark Dynamic Inst.
Count

Inst. Ref. vs.
Total Ref.

Description

auto 17374 0.67 Automobile control application

blit 72416 0.75 Graphics application

compress 322101 0.68 A Unix utility

des 510814 0.80 Data Encryption Standard

engine 955012 0.63 Engine control application

fir_int 629166 0.70 Integer FIR filter

g3fax 1412648 0.76 Group three fax decode

g721 231706 0.55 Adaptive differential PCM for voice
compression

jpeg 1342076 0.65 JPEG 24-bit image decompression
standard

map3d 1228596 0.82 3D interpolating function for automo-
bile control applications

pocsag 131159 0.72 POCSAG communication protocol
for paging applications

servo 41132 0.50 Hard disc drive servo control

summin 1330505 0.77 Handwriting recognition

ucbqsort 674165 0.76 U.C.B. Quick Sort

v42bis 1488430 0.76 Modem encoding/decoding

Average - 0.70 -
10

e pre-
ogram

at
ess.

ize,
s and

loops

gy
loop
have

cuted
m-fill
made to the main Icache without using a loop cache.

5.1 Limited Loop Size Scheme vs. Flexible Loop Size Scheme

For comparison purposes, we will present both the results for the extended loop caching schem
sented here, and those for the original scheme proposed in [6]. In [6], the maximum allowable pr
loop size is limited by the loop cache size. i.e.w=c. We will call this scheme theLimited Loop Size
Scheme.

In this work, we allow the program loop size to be larger than the loop cache size. i.e.w c. We will
call this extended scheme theFlexible Loop Size scheme. For the rest of this paper, we will assume th
for the Flexible Loop Size scheme,w=7. i.e. all program loops are assumed to be 128 instructions or l
Any loop larger than 128 instructions will be ignored by the hardware.

5.2 Overall MCAR

Figure 9 shows the average MCAR for the entire benchmark suite, as a function of loop cache sc.
Four sets of MCAR are shown. They are the results of the combination of loop cache fill strategie
the Limited versus Flexible Loop Size schemes.

All of these access rates decrease drastically betweenc=2 andc=4. Fromc=5 onwards, there is virtu-
ally no improvement. This is consistent with the observation made in Section 4 where the program
were dominated by sizes of 16 instructions (32 bytes) or less.

5.1.1 Cold-Fill Strategy vs. Warm-Fill Strategy
Warm-fill strategy offers only slightly lower MCAR than the cold-fill strategy. The warm-fill strate

will offer significant advantage over its cold-fill counterpart only when the number of iterations per
invocation are small (about two or three iterations per loop invocation). In the benchmarks that we
evaluated, this situation did not happen very often. That is, when a small loop is invoked, it is exe
relatively large number of times. As a result, for benchmarks that could benefit greatly from the war
strategy, they also benefited greatly from the cold-fill strategy.

≥

0.50

0.60

0.70

0.80

0.90

1.00

Cold-Fill/Limited Loop Size
Cold-Fill/Flexible Loop Size
Warm-Fill/Limited Loop Size
Warm-Fill/Flexible Loop Size

M
ai

n
Ic

ac
he

 A
cc

es
s

R
at

es
 (

M
C

A
R

)

Loop Cache Size,c

1 2 3 4 5 6 7

Figure 9: Main Icache access rate (MCAR)

Limited Loop Size

FLexible Loop Size
11

, for
the
tures.
apture
s per

ed by
using

me
-

asure-
f a M-

Mod-
rious

ed on
level c/

rences

by the

f refer-
l refer-
ties on
em, the

blocks
nsump-
average
5.1.2 Limited Loop Size vs. Flexible Loop Size
The flexible loop size scheme offers significantly lower MCAR than the limited loop size scheme

loop cache size of 16 instructions or less (c 4). For such small loop cache sizes, cache conflict is
major cause for having poor loop cache utilization, even for programs that exhibit tight loop struc
Take a loop cache size of 8 instructions, for example. Not only can the flexible loop size scheme c
the entire loop for all the loops with size of 8 instructions or less, but it can also capture 8 instruction
iteration for all the loops with size of up to 127 instructions. Since all the program loops are dominat
size of 4-16 instructions, loop cache sizes of 2 to 8 instructions stand to gain the most benefits from
the flexible loop size scheme.

For cold-fill strategy withc=2, moving from limited loop size scheme to flexible loop size sche
reduces the average MCAR from 0.92 to 0.77; for cold-fill strategy withc=3, the move reduces the aver
age MCAR from 0.74 to 0.65.

6 Power Saving

To quantify the power saving of using the loop caching scheme proposed in this work, power me
ments were taken from an actual CMOS 0.25um, 1.75v, integrated design. This design consists o
CORE micro-controller, a 8 KB, 4-way set-associative unified cache, a MMU unit and some other
ules. The block diagram of this system is very similar to that shown in Figure 3. It is targeted for va
mobile applications.

The power measurements were obtained using a combination of PowermillTM simulations on a back
annotated design, and by using high level c/c++ simulations. Powermill simulations were perform
each benchmark program to collect power measurements on various parts of the design. The high
c++ simulations were performed to obtain information such as number of instruction and data refe
made to the unified cache, the bus activities, the loop cache utilization, etc.

We will present the power consumption in terms of the percentage of the total power consumed
whole design (the micro-controller, the cache, the MMU and a few other modules).

6.1 Instruction Versus Data References

Table 1 shows the ratio between the number of instruction references and the total number o
ences (instruction and data included). Overall, instruction references constitutes about 70% of al
ences made to the unified cache. Instruction references contribute about 63% of switching activi
the address bus, and about 75% on the data bus (not shown in this Table). In this integrated syst
capacitive loading on the data bus versus the address bus is about 3:1.

6.2 Power Measurements

Table 2 shows the average percentage power consumption, over all benchmarks, for some of the
shown in Figure 3. In this table, the loop cache array size is assumed to be 16-entry. The power co
tions for the loop cache controllers are estimated based on the estimated logic usage and the
power density found in this design. Some additional margin has been added to these estimates.

≤

12

p size
, espe-
er due

wer
d-fill,
The power saving due to the loop cache can be approximated as follows:
Power saving = (Pcache+PAGU+PCIU)*I ref*(1-MCAR)

- (PLCA16 /16*LCS + PLCC)
where: PX denotes the percentage power for block “X”;

Iref denotes the percentage of instruction references
of all cache accesses;

LCS denotes the loop cache size in number of
instruction entries.

Figure 10 shows the overall power saving for four combinations of cache fill strategies and loo
schemes. This figure shows that the flexible-sizing scheme outperforms the limited-sizing scheme
cially when the loop cache size is small (). However, as the loop cache size increases, the pow
to the loop cache array starts to increase, causing the overall power saving to decrease.

Comparing the warm-fill and cold-fill strategies, warm-fill has higher loop cache hit rates but lo
power saving, primarily due to its constant utilization of the loop cache array and its controller. Col

Table 2: Breakdown of Percentage Power

Blocks % of Total Power

Address Generation Unit (AGU) 0.6228%

Core Interface Unit (CIU) 2.2699%

Loop Cache Array (LCA16) 0.3552%

Loop Cache Controller (LCC)a (Cold-fill) 0.7500%

Loop Cache Controller (LCC)a (Warm-fill)

a. Estimated only

1.5000%

Main Unified Cache 51.3728%

-2

0

2

4

6

8

10

12

14

16

Cold-fill/limited-size
Warm-fill/limited-size
Cold-fill/flexible-size
Warm-fill/flexible-size

1 2 3 4 5 6 7

Figure 10: Overall Power Saving

O
ve

ra
ll

P
ow

er
 S

av
in

g
(%

)

Loop Cache Size,c

c 4≤
13

, with
mark

en-

many
ted on-
in the

nergy
0]:
ere is no

p to be

e not

to any

is not

n the
ciated
on the other hand, is simpler to implement and achieves higher power savings.
Figure 11 shows the power saving for using a loop cache with cold-fill, flexible loop size scheme

c=3 (8-entry) andc=4 (16-entry). The power saving, in this case, varies greatly across the bench
suite. Forc=4, the power saving ranges from -0.87% (wasting power) forucbqsort , to 39% forblit .
Overall, the saving is 12.72% forc=3 and 14.34% forc=4.

7 Acknowledgements

The authors would like to thank Steve Layton and Afzal Malik, both from M-CORE Technology C
ter, Motorola, for all their assistance in Powermill simulations.

8 Summary

Low system cost and low energy consumption are two important factors to consider in designing
portable and handheld systems. To reduce memory costs, more and more memory is now integra
chip. As a result, the area and power consumption due to on-chip memory will continue to increase
near future.

In this work, we proposed a low-cost instruction caching scheme to reduce the instruction fetch e
when executing small tight loops. Our proposed technique is unique in the following ways [6,7,9,1

• Low area costs: the loop cache does not have an address tag. The array is direct mapped. Th
valid bit associated with each array entry.

• The scheme does not need any special loop instruction. Furthermore, it allows a program loo
constructed using different types of branch instructions available in the ISA.

• With cold-fill strategy, the loop cache array and its controller are not exercised when we ar
executing a program loop.

• The program loops are naturally aligned. That is, a program loop does not need to be aligned
address boundary in order to take full advantage of this caching scheme.

• When executing a program loop, all hardware associated with instruction address generation
exercised. Also, the instruction address tag access and compare are not performed.

• Since the controller knows precisely whether the next sequential instruction request will hit i
loop cache, well ahead of time, there is no cycle count penalty nor cycle time degradation asso

-5

0

5

10

15

20

25

30

35

40
blit

comp

des

engin

fir_int

g3fax

g721

jpeg

average

ucbqsort

summin

servo

posag

map3d Overall

P
ow

er
 S

av
in

g
(%

)

v42bis

Benchmarks

auto

Figure 11: Power Saving for Cold-Fill/Flexible Loop Size, c=3 and c=4

c=3
c=4
14

y into
tches.

igh-

ents

, Mul-
d

uc-

For
d

Korea,

n: A
with this technique.
• Small area overhead has other benefits as well. It allows tight integration of the loop cache arra

the processor core. Tight integration further reduces energy consumptions due to instruction fe
It also reduces the adverse effect on timing due to the presence of the loop cache.

With a 16-entry 32-byte (c=4) loop cache, we can reduce the overall power by about 14.34%.

9 References

[1] ADSP-2106x SHARCTM User’s Manual, Analog Devices Inc., 1998.
[2] N. Bellas, I. Hajj and C. Polychronopoulos, “A New Scheme for I-Cache energy reduction in H

Performance Processors,”Power Driven Microarchitecture Workshop, held in conjunction with
ISCA 98, Barcelona, Spain, June 28th 1998.

[3] N. Bellas, I. Hajj, C. Polychronopoulos and G. Stamoulis, “Energy and Performance Improvem
in Microprocessor Design Using a Loop Cache,”Proc. Int’l Conf. on Computer Design, Austin,
Texas, October 1999.

[4] K. Ghose, M. Kamble, “Reducing Power in Superscalar Processor Caches Using Subbanking
tiple Line Buffers and Bit-Line Segmentation,”Proc. Int’l. Symp. on Low Power Electronics an
Design, August, 1999.

[5] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter Cache: An Energy Efficient Memory Str
ture,” Proc. Int’l. Symp. on Microarchitecture, pp. 184-193, December, 1997.

[6] L. H. Lee, B. Moyer, J. Arends, “Instruction Fetch Energy Reduction Using Loop Caches
Embedded Applications with Small Tight Loops,”Proc. Int’l. Symp. on Low Power Electronics an
Design, August, 1999.

[7] L. H. Lee et. al., Patent Pending in US, Germany, France, GB, Italy, Netheland, Japan, China,
Taiwan, “Data Processor System Having Branch Control and Method Therefor,”filed 19th June
1998, Motorola Incorp.

[8] M•CORE Reference Manual, Motorola Inc., 1997.
[9] B. Moyer, L. H. Lee and J. Arends, US Patent number 5,920,890,“Distributed Tag Cache Memory

System and Method for Storing Data in the Same,” April, 6th 1999.
[10] B. Moyer, L. H. Lee and J. Arends, US Patent number 5,893,142,“Data Processing System Having

a Cache and Method Therefo,” July, 6th 1999.
[11] B. Moyer and J. Arends, “RISC Gets Small,”Byte Magazine, February 1998.
[12] C. Su and A. M. Despain, “Cache Design Trade-offs for Power and Performance Optimizatio

Case Study,”,Proc. Int’l. Symp. on Low Power Design, pp. 63-68, 1995.
[13] TMS320C2x User’s Guide, Texas Instruments Inc., 1993.
[14] TriCoreTM Architecture Manual, Siemens Incorp., 1997.

M•CORE is a trademark of Motorola Inc.
Powermill is a trademark of Synopsys Inc.
TriCore is a trademark of Siemens Inc.
SHARC is a trademark of Analog Devices, Inc.
15

	1 Introduction and Related Work
	1.1 Compiler Assisted Loop Caching Scheme
	1.2 Special Loop Instructions
	1.3 Multiple Cache Line Buffering
	Figure 1: Multiple cache line buffering

	1.4 Counter-Based Loop Caching Scheme
	Figure 2: Loop Cache Organization
	Figure 3: An Embedded Microcontroller System
	Figure 4: Program loop size is larger than the loop cache size

	2 Counter Based Program Loop Caching
	2.1 Loop Cache Organization
	2.2 Short Backward Branch Instruction
	Figure 5: sbb Instruction Format

	2.3 Monitoring the sbb Executions
	Figure 6: A Counter To Monitor sbb Executions

	3 Cache Fill Strategies
	3.1 Cold-Fill Strategy
	Figure 7: Loop cache controller with cold-fill strategy

	3.2 Warm-Fill Strategy
	Figure 8: Loop cache controller with warm-fill strategy
	Table 1: Powerstone benchmark suite

	4 Benchmarks
	5 �Main Instruction Cache Access Rates
	5.1 Limited Loop Size Scheme vs. Flexible Loop Size Scheme
	5.2 Overall MCAR
	Figure 9: Main Icache access rate (MCAR)

	6 Power Saving
	6.1 Instruction Versus Data References
	6.2 Power Measurements
	Table 2: Breakdown of Percentage Power
	Figure 10: Overall Power Saving
	Figure 11: Power Saving for Cold-Fill/Flexible Loop Size, c=3 and c=4

	7 Acknowledgements
	8 �Summary
	9 �References
	[1] ADSP-2106x SHARCTM User’s Manual, Analog Devices Inc., 1998.
	[2] N. Bellas, I. Hajj and C. Polychronopoulos, “A New Scheme for I-Cache energy reduction in Hig...
	[3] N. Bellas, I. Hajj, C. Polychronopoulos and G. Stamoulis, “Energy and Performance Improvement...
	[4] K. Ghose, M. Kamble, “Reducing Power in Superscalar Processor Caches Using Subbanking, Multip...
	[5] J. Kin, M. Gupta and W. Mangione-Smith, “The Filter Cache: An Energy Efficient Memory Structu...
	[6] L. H. Lee, B. Moyer, J. Arends, “Instruction Fetch Energy Reduction Using Loop Caches For Emb...
	[7] L. H. Lee et. al., Patent Pending in US, Germany, France, GB, Italy, Netheland, Japan, China,...
	[8] M·CORE Reference Manual, Motorola Inc., 1997.
	[9] B. Moyer, L. H. Lee and J. Arends, US Patent number 5,920,890, “Distributed Tag Cache Memory ...
	[10] B. Moyer, L. H. Lee and J. Arends, US Patent number 5,893,142, “Data Processing System Havin...
	[11] B. Moyer and J. Arends, “RISC Gets Small,” Byte Magazine, February 1998.
	[12] C. Su and A. M. Despain, “Cache Design Trade-offs for Power and Performance Optimization: A ...
	[13] TMS320C2x User’s Guide, Texas Instruments Inc., 1993.
	[14] TriCoreTM Architecture Manual, Siemens Incorp., 1997.

