
DACIA: A Mobile Component Framework for Building

Adaptive Distributed Applications

Radu Litiu and Atul Prakash

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109-2122 USA

Email: radu,aprakash@eecs.umich.edu

Abstract

Current computing systems exhibit an impressive het-

erogeneity of hardware resources, software capabilities,

and network connectivity. They have to accommodate

various application and client demands and to adjust to

the continuously changing load on network segments and

intermediate processing nodes. We present DACIA1, a

framework for building adaptive distributed applications

through the 
exible composition of software modules im-

plementing individual functions. An application is seen

as a collection of components connected in a directed

graph. Through runtime recon�guration of the appli-

cation graph, the application adapts to changes in the

execution environment, resource availability, and appli-

cation requirements. Thus, a more eÆcient execution

is achieved. The location where various components are

executed can be changed dynamically and the execution

can be occasionally outsourced to nodes having specialized

hardware or to less loaded sites on the network. Some

components or groups of components can be replaced by

other components or groups of components. DACIA sup-

ports application and user mobility, allowing parts of an

application to move to di�erent hosts at runtime, while

maintaining seamless connectivity.

1 Introduction and Motivation

The explosive growth of the World Wide Web and the

proliferation of Internet applications and services pose

1Dynamic Adjustment of Component InterActions

signi�cant challenges to system developers, namely deal-

ing with the heterogeneity encountered within the end

systems and across the network infrastructure, as well as

handling the variety of user and application demands.

Current computing systems exhibit an impressive het-

erogeneity in terms of hardware resources, from high-end

machines, with signi�cant computing power, memory,

and graphic display capabilities, to simple devices, such

as PDAs, that can only display text or primitive graph-

ics. They are connected through network links whose

characteristics in terms of delay, capacity, and error rate

can vary by many orders of magnitude. They have to ac-

commodate various application and client demands (e.g.,

image quality, latency, video frame rate, guaranteed data

delivery) and to adjust to the continuously changing load

on network segments and intermediate processing nodes.

To manage this highly variable environment, the commu-

nication infrastructure and the services provided have to

adapt to the variations in resource availability and ap-

plication requirements. Heterogeneity and variability are

even more stringent problems in mobile computing envi-

ronments, which nowadays are becoming more and more

ubiquitous.

To present a concrete example, consider UARC [9],

an experimental testbed for wide-area scienti�c collab-

oratory work. Among the collaborative tools provided,

there are several tools for visualizing various real-time or

archived data streams. A communication server handles

the subscriptions from multiple clients and the distri-

bution of data to these clients (Figure 1). The server



receives large amounts of raw data from various data

sources, representing some instruments that collect data

in real time. The server caches this data for fault tol-

erance and for future access. It also applies some com-

putations transforming the raw data into GIF images.

Then it sends the images to the interested clients using

a group communication service.

Figure 1: A collaborative application

We have encountered several problems with using this

system. First, the server handles inputs from tens of data

sources and subscriptions from hundreds of clients, who

can choose to view the data in di�erent ways, each of

which requires a di�erent computation task to run on

the server. Consequently, the server may not have the

capability to compute in real time the images for all the

subscriptions. Second, most of the time the computa-

tions produce images with bigger size than the size of the

raw data. Therefore, the network links from the server

to some clients can get congested. Finally, these prob-

lems can potentially be alleviated by using an alternative

architecture where the server sends the raw data to the

clients and clients do the image computations. How-

ever, our experience from UARC was that some clients

get overloaded if they are computing many images. To

address this problem, some images can be computed on

nearby hosts.

The work described in this paper allows us to change

at runtime the way the application is structured, to move

some of the functions of the application from one host to

another, and to replicate some functions across multiple

hosts.

Users are inherently mobile, regardless whether they

work on their desktop computer or they use some mobile

computing device. They run simultaneously multiple ap-

plications, some of which are part of a distributed com-

puting environment, being connected to services, data

sources, collaborative partners, etc. There are numerous

situations in which a user would not want to shutdown

all the applications he is running, cut all the connec-

tions with other parties, and quit all the login sessions

he has established, in order for a minute later to move to

a di�erent place and restart the very same applications,

establish manually the same connections, and also im-

port the latest changes to some con�guration �les, that

he has just made earlier.

Our work allows a mobile user to simply "pull" an ap-

plication from the desktop of one computer and drop it

on a new desktop. In this way, no manual restart is nec-

essary and no connection has been broken and needs to

be re-established. This seamless connectivity also pro-

vides transparency of the location of the user. Moreover,

the user can move an application from some device to a

totally di�erent device, e.g., from a full-graphics com-

puter screen to a PDA having a small text display. The

application adapts to the new device and it presents to

the user an interface appropriate to the device capabili-

ties.

In this paper we present DACIA, a framework that ad-

dresses the challenges of building customized distributed

applications that perform runtime adaptation and pro-

vides support for component mobility. The modular ar-

chitecture adopted enables the dynamic recon�guration

of a distributed application by reordering application com-

ponents or moving components across machine bound-

aries. We show that the overhead introduced by using

modularity is minimal and that often we can actually

reduce the communication costs in distributed applica-

tions. We give an example of using code mobility and

recon�guration to improve the performance of a simple

test application.

The rest of the paper is organized as follows: Sec-

tion 2 identi�es the objectives we pursued in designing

2



DACIA. Section 3 examines existing systems and tech-

nologies covering areas related to our work. Section 4

presents our approach to providing a framework for 
ex-

ible component composition. Section 5 shows some per-

formance results obtained with small test applications

implemented using DACIA. Section 6 presents our con-

clusions and outlines some of the current and future chal-

lenges for our work.

2 Design Goals

In designing DACIA, we considered the following issues

concerning the design, implementation and execution of

distributed applications for the Internet:

�Managing Heterogeneity and Adapting to Vari-

ation

Di�erent distributed applications place di�erent re-

quirements on the communication infrastructure and sup-

porting services. Users running the same applications

may have di�erent needs and di�erent capabilities. The

responsibility to adapt to changing demands and varia-

tions in resource availability is shared between the ap-

plications and the infrastructure. Adaptation is based

on both local knowledge and information obtained from

other entities along the execution path.

� Modular Design

To manage complexity, isolate failures, and facilitate

the construction of customized and 
exible con�gura-

tions, a modular architecture o�ers an appropriate solu-

tion. In this architecture, applications are built through

the composition of software components implementing

individual operations. To allow 
exible composition,

components interact through standardized interfaces. The

use of a modular architecture allows components to be

reused across multiple applications.

� Runtime Recon�guration of the Application

The simple composition of software modules imple-

menting various functions of a system does not o�er

a satisfactory solution. The way these modules inter-

act cannot always be fully determined statically and is

greatly a�ected by variations in user needs and capabili-

ties and the load on various nodes and network segments.

Runtime composition and dynamic adjustment of the or-

der and the location of execution of di�erent components

can signi�cantly improve the performance of the system

and the global usage of the available resources. In some

cases, by deferring some operations, their execution can

be avoided. Finding and using spare resources leads to

more eÆcient scheduling of concurrent operations, thus

optimizing the execution.

� Support for Application and User Mobility

An application or part of an application running on

some computer should be able to move to a di�erent

computer without (visibly) stopping its execution or im-

pacting other applications it communicates with. The

movement should not a�ect the connectivity of the ap-

plication. The same application should be able to exe-

cute on di�erent devices with di�erent capabilities (e.g.,

desktop computer, PDA, cell phone, etc). The applica-

tion will present to the user an interface and a set of

features corresponding to the capabilities of the device.

� Performance

The use of modularity should not introduce signi�-

cant overheads compared with a monolithic implemen-

tation. Component mobility and application recon�g-

uration should contribute to reducing the overall cost

of communication within a distributed application. The

implementation of component mobility should be eÆ-

cient and robust.

3 Related work

The idea of building computing systems through the

composition of individual modules is not new; it has been

used extensively in the design and implementation of sys-

tems ranging from layered operating systems [14] and

network architectures [20] to more advanced distributed

systems.

A frequently used approach is to view an application

as a protocol stack. Horus [16] and its ML implementa-

tion, Ensemble [5], treat protocols as abstract data types

that can be stacked on top of each other in a variety of

3



ways at runtime. Protocol modules have standardized

top and bottom interfaces and they communicate with

each other through message passing. Horus provides an

object-oriented protocol composition framework; it sup-

ports objects for communication endpoints, groups of

communicating endpoints, and messages.

The x-kernel [7] is an operating system kernel that

provides an object-oriented framework designed to sup-

port the rapid implementation of eÆcient network pro-

tocols. It provides a uniform protocol interface and sup-

port library that allows the programmer to con�gure in-

dividual protocol objects into a protocol graph that real-

izes the required functionality.

Scout [12] is a communication-oriented operating sys-

tem built on the foundation provided by the path ab-

straction. A path represents the 
ow of data from an I/O

source, through the system, to an I/O sink. The units

of program development in Scout are called routers. A

router implements one or more services that can be used

by other higher-level routers. Routers are organized in

a router graph, de�ned at build time. A path is cre-

ated incrementally by invoking a create operation on a

router and specifying a set of invariants describing the

properties of the desired path.

Bast [3] achieves 
exible protocol composition by ap-

plying an object-oriented technology, the Strategy design

pattern [2]. With Bast, a distributed system is composed

of protocol objects, which are instances of protocol classes

and have the ability to remotely invoke each other and

to participate in various protocols. The Strategy pattern

consists of objectifying an algorithm executed by a pro-

tocol object, i.e., encapsulating it into a strategy object,

which is used by the context object represented by the

protocol object. A strategy and its context are strongly

coupled and the application layer only deals with in-

stances of the protocol class.

FarGo [6] provides support for moving the compo-

nents of a distributed application among multiple hosts

during the execution of the application. The program-

ming model proposed, called dynamic application lay-

out, separates the programming of the layout of the ap-

plication from the application logic. FarGo uses Java

RMI to implement a re
ective inter-component referenc-

ing model that allows the attachment of relocation se-

mantics to inter-component references. An event-based

monitoring service provides support for making runtime

relocations decisions.

The Rover Toolkit [8] implements a distributed object

model that provides a uniform view of objects at the

OS level and a queued RPC mechanism for disconnected

operation and object migration. For instance, simple

GUI code can be migrated to a mobile client, where it

uses queued RPC to communicate with the rest of the

application running on the server.

CORBA [4] provides a distributed object model that

supports location transparency, interoperability, and porta-

bility. Using an ORB, a client object can transparently

invoke a method on a server object, without the need of

being aware of where the object is located, its program-

ming language, and its operating system.

To the best of our knowledge, there are no toolkits

that provide support for building dynamically recon�g-

urable modular applications. Our DACIA framework

allows the runtime recon�guration of distributed appli-

cations by changing the location of execution of various

components or by replacing a set of components with

a di�erent set of components. We speci�cally focus on

minimizing communication costs when components are

(re)located on the same host.

Several adaptive solutions have been proposed to ad-

dress the challenges of both wired and mobile comput-

ing systems. Most of the existing work targets the im-

provement of network communication and bandwidth us-

age. The adaptive service model presented in [10] uses

admission control and resource reservation and it al-

lows the network and applications to (re)negotiate QoS

depending on dynamic network conditions. Other ap-

proaches [1, 19] rely on the use of proxies that per-

form data �ltering or on-demand dynamic distillation

(data type-speci�c lossy compression). Odyssey [13] sees

adaptation as a collaborative partnership between the

system and individual applications. The system moni-

4



tors resource levels and noti�es applications of relevant

changes. Each application independently decides how

best to adapt when noti�ed. Conductor [18] enables the

operating system to o�er adaptation as a service to ap-

plications. It provides a general mechanism to select and

dynamically deploy combinations of adaptive agents to

multiple points in a network.

Our approach to the problem of adapting to variabil-

ity and heterogeneity is based on considerations over the

functionality of an application and the way it is achieved.

It looks at the structure of an application and strives to

achieve a more eÆcient execution by changing the way

of interconnecting components and their location of ex-

ecution.

4 The Architecture of DACIA

DACIA (Dynamic Adjustment of Component InterAc-

tions) is a framework for building adaptive distributed

applications in a modular fashion, through the 
exible

composition of software modules implementing individ-

ual functions. The objective of a modular approach is

to manage complexity, isolate failures, and facilitate the

construction of customized and 
exible con�gurations.

Customization enables the application developer to use

only the modules necessary to achieve the desired func-

tionality. Flexibility allows these modules to be com-

bined in multiple ways. An application can be recon�g-

ured dynamically at runtime, in order to obtain a more

eÆcient execution.

4.1 A Model for Modular Design

An application is constructed by connecting in a par-

ticular con�guration several components implementing

various functions or parts of the application. The ap-

plication can be seen as a directed graph of connected

components. The links between components indicate the

direction of the data 
ow within the application. The

graph may have cycles and multiple paths may exist in

the graph between two components.

The same application can be built in multiple ways,

either by con�guring di�erently the same set of compo-

nents or by using di�erent sets of components. Figure

2.a shows the graph structure for the collaborative sys-

tem presented in Section 1 (Figure 1). A communication

server receives real-time streamed data from multiple

data sources, it applies some computations transform-

ing the raw data into GIF images, and then disseminates

the images to various clients. Multiple computations can

be applied to the same data sets, corresponding to the

particular clients' subscriptions. The server caches the

data (the Storemodule) for fault tolerance and for future

access.

Figure 2: The application graph. Ovals represent compo-
nents. Grey rectangles represent hosts. Components are con-
nected through directed links, indicating the direction of the
data 
ow within the application. Multiple graphs (a-b) may
correspond to the same application.

Figure 2.b presents an alternative con�guration for

the application, that uses several Compute modules, lo-

cated closer to the clients, in the same local network or

even on the same host with the clients. The clients that

are unable to perform computationally intensive tasks

use Compute modules located on neighboring hosts. The

communication server outsources the storage function to

a di�erent host.

Further changes can be applied to the application

graph. Data caches can be placed at various points in the

network, by introducing Store components. The server

can store images instead of raw data. In this case, a

Compute module should be placed between the Server

and the Store module. A pair of Compress/Decompress

components can be introduced at appropriate points in

the data path. Compression can be applied either to the

5



raw data or to images, by appropriately reordering these

components. Depending on the network topology and

on runtime conditions, either one of these con�gurations

may be more eÆcient than the other ones.

4.2 PROCs

In DACIA, a component is a PROC (Processing and

ROuting Component). A PROC can apply some trans-

formations to one or multiple input data streams. It can

synchronize input data streams; it can split the items

in an input data stream and send them alternately to

multiple destinations. Similar to the paths in Scout[12],

the way PROCs are connected dictates the 
ow of data

in the system.

PROCs represent the basic building blocks for an ap-

plication. They can be interconnected in multiple ways,

according to certain rules and restrictions. PROCs are

mobile software components and they represent the unit

of relocation.

There are certain di�erences between PROCs and ob-

jects in other component software architectures. PROCs

are not just encapsulated objects. They are relocatable

data objects. They are executable entities that may hold

state, may be interrupted and restarted, and they are in-

volved in communications with other entities. They are

routing elements that dictate the structure of an appli-

cation and the data paths.

PROCs communicate by exchangingmessages through

ports. An output port of a PROC is connected to an in-

put port of another PROC. The communication can be

either synchronous or asynchronous. For synchronous

communication, the PROCs must be located on the same

host and the thread that executes the output() method

of the source PROC will also execute the input() method

of the connected PROC and thus the action associated

with that PROC. In the asynchronous case, the messages

received by a PROC are inserted into the PROC's mes-

sage queue. Every PROC has a thread that handles the

messages in the queue, usually in FIFO order. (Alterna-

tively, the message queue can be organized as a priority

queue.) Asynchronous communication is generally used

when multiple input streams have to be synchronized.

It is also used when the execution of a PROC's action

on some input takes a considerable amount of time and

decoupling the actions of the two PROCs is desirable.

Our choice of using ports to communicate between

PROCs, as opposed to the object reference model adopted

by other component architectures, is motivated by the

fact that most of the applications we are considering ex-

change streamed data. For streamed data, an RPC-like

invocation model is not appropriate. In addition to the

blocking semantics provided by RPC, we also support

asynchronous message passing. Ports provide a clean

way of specifying the one-to-one connections correspond-

ing to a graph structure. They allow to distinguish

among messages received from di�erent sources, to syn-

chronize and to combine various data streams.

4.3 The Engine

The engine is the most important part of DACIA. It de-

couples the application and component-speci�c code and

functionality from the general administrative tasks such

as maintaining the list of PROCs and their connections,

migrating PROCs, establishing and maintaining connec-

tions between hosts and communicating between hosts.

Although it belongs to DACIA's infrastructure, the en-

gine is instantiated as part of each application. Every

distributed application uses an engine on every host it

runs on (Figure 3). We chose to use an engine per ap-

plication per host (as opposed to sharing an engine run-

ning on a host between multiple applications) in order

to minimize the cost of communication between PROCs

and between PROCs and the engine. The engine and

the PROCs run within the same address space, there-

fore the (synchronous) local communication translates

into simple procedure calls.

A minimal application consists of an engine and a few

PROCs, connected in some con�guration. A distributed

application is created by connecting engines running on

multiple hosts and eventually connecting PROCs run-

ning on di�erent hosts. An engine has global knowledge

about all the PROCs in the system and the con�guration

6



Figure 3: A DACIA distributed application. An engine runs
on every host. It manages the local PROCs and the connec-
tions between PROCs, both local and across di�erent hosts.
The monitor implements application-speci�c relocation and
recon�guration policies.

of the application. When two engines connect to each

other, they exchange information about each other's lo-

cal views, so that they establish a consistent view of the

system.

4.4 The Monitor

The engine works in conjunction with a monitor. The

monitor represents the part of an application responsible

for performance monitoring and making recon�guration

decisions. Performance monitoring is not the sole re-

sponsibility of the monitor. The PROCs and the engine

may also collect some performance data. The monitor

makes recon�guration decisions and instructs the engine

accordingly. The engine provides an API that allows

the application recon�guration. The engine is responsi-

ble for establishing and removing connections between

PROCs and for moving PROCs to other hosts.

The engine is general-purpose and PROCs may be

application-independent, being potentially reused to build

multiple applications. The monitor is usually speci�c to

the application and it incorporates relocation and recon-

�guration policies applicable only to a particular applica-

tion. Assuming that all the PROCs needed are provided,

an application developer only needs to write a small main

program and the customized monitor. An application

can use simultaneously multiple monitors, implementing

di�erent adaptations. Currently, DACIA provides no co-

ordination among multiple monitors.

4.5 Connectivity

In our current implementation, a PROC is not required

to be aware about the existence of other PROCs or about

the structure of an application. Thus PROCs are free

from the task of handling references to other PROCs

and they concentrate on their speci�c functionality. For

a PROC, the fact that the connected PROCs are local or

remote is transparent. If needed, PROCs can exchange

information about each other and about other PROCs

in the system through their input/output ports.

The engine maps virtual connections between PROCs

to either local or remote physical connections, and han-

dles data transfers accordingly. Multiple virtual remote

connections between pairs of PROCs are multiplexed

over a single network connection between two engines.

The connectivity between remote PROCs is maintained

as long as the corresponding engines are connected. Shar-

ing physical connections reduces the cost of establishing

network connections in a highly dynamic application,

where PROCs often connect to each other or they are

disconnected.

The failure of a connection between engines is trans-

parent to the PROCs. Currently, when a network con-

nection is broken, an engine caches messages addressed

to a remote PROC until the connection is re-established,

assuming that the disconnection is transient. We intend

to address permanent connection failures by notifying

the sender PROC after a timeout interval.

4.6 Component Mobility

PROCs can move between hosts while maintaining seam-

less connectivity with other PROCs. The structure of

the application does not change and the 
ow of data in

the system is not interrupted. The movement of a PROC

is transparent to other PROCs. If a PROC moves to

another host, all the messages left in the asynchronous

message queue move with the PROC.

When a PROC moves, we maintain a weak consis-

tency of each engine's view of the PROC's location. The

engine where the PROC was previously located informs

7



the other engines about the change. If an engine receives

a message addressed to a PROC that has moved, it for-

wards the message to the engine currently hosting the

PROC and it informs the sender engine about the new

PROC location. Presenting the details of ensuring the

robustness of data exchange between moving PROCs is

beyond the scope of this paper.

The mobility of PROCs, as it is implemented in DA-

CIA, provides an additional bene�t. A PROC can be

written to be hardware-dependent. In this case, when a

PROC moves from one host to another, it can be made

to exhibit di�erent capabilities, depending on the host.

For example, on a high-end host, a PROC can have a

full-
edged graphical representation and it can present

a GUI interface to the user. On a PDA, the PROC

only displays information in text format and it even-

tually sends visual or sound alerts to inform the user

about important changes in the events monitored by the

PROC. The user is able to move the PROC from one

device to another without having to re-instantiate it or

to connect again to other PROCs.

4.7 Runtime Recon�guration

In many cases, an application can adapt to dynamic

changes in load and the speci�c execution environment

by recon�guring itself at runtime. The recon�guration

consists of either reordering or relocating some compo-

nents or replacing a set of components with a di�erent

set of components, possibly connected in a di�erent con-

�guration. A more eÆcient execution can be achieved

through better usage of the available resources and op-

timized inter-PROC communication.

DACIA allows remote components to be relocated on

the same host and thus to be attached into the same

address space. Opposite, co-located components can be

moved to di�erent hosts and thus detached into di�erent

address spaces. Based on application speci�cs and the

characteristics of the hardware (machines and networks)

where the application runs, one or the other of the above

actions may be bene�cial. For two PROCs, situated on

di�erent hosts and exchanging messages frequently, the

cost of communication can be signi�cantly reduced if the

PROCs are co-located. In this case, the communication

cost is just the cost of some procedure calls within the

same address space. Conversely, two PROCs doing some

CPU-intensive processing without much interaction with

each other may execute more eÆciently if they are relo-

cated on di�erent hosts.

With DACIA, we attempt to minimize the e�ort for

building customized adaptive applications, by putting

as much complexity as possible in the infrastructure and

as little as possible in the application itself. General-

purpose adaptive policies can be embedded in the infras-

tructure. For example, �lters that reduce the amount of

data should be placed as early as possible in the data

path. Also, a pair of Compress/Decompress components

can be introduced at the ends of a slow network link.

Additionally, application-speci�c adaptive policies can

be implemented in the monitor.

4.8 Implementation Issues

We have fully implemented a DACIA prototype in Java.

The engine is implemented as a static class. Our imple-

mentation uses TCP to communicate between engines.

Alternatively, other transport mechanisms can be used.

One of the goals of our design was to enable inexpe-

rienced users to build customized applications with only

a small programming and con�guration e�ort. We o�er

application developers an API that provides some sim-

ple primitives for creating and destroying PROCs, con-

necting engines, connecting and disconnecting PROCS,

moving PROCs from one host to another, and register-

ing and starting a monitor. Using this API and assuming

that the code for the PROCs (and the monitor, if appli-

cable) is provided, a simple distributed application can

be written using 10-15 lines of code.

Figure 4 presents a simple DACIA application, con-

sisting of an engine and two PROCs. These PROCs,

of type Forward and Chat, respectively, each have one

input and one output. The output of p1 is connected

to the input of p2. The engine connects with another

engine running on a di�erent host. Subsequently, con-

8



nections can be established between PROCs running on

the two hosts. The message exchange starts by calling

the start() method on p1.

In addition to the programming API, we provide a

command-line shell interface (Figure 5) for runtime man-

agement of the application. Through this interface, the

user interacts with the engine running on the local host

and he can control the connectivity and the location of

PROCs. The user can not access the PROCs directly,

but only through the engine. This interface provides

almost the same facilities o�ered by the programming

API.

public class App {

public static void main(String[] args) {

if (args.length < 1) {

System.out.println("Usage error:

java dacia.App [config_file_name]");

System.exit(1);

}

// initialize the engine

Engine.init(args[0]);

// instantiate two PROCs and connect them

Proc p1 = new Forward();

Proc p2 = new Chat();

Engine.addProc(p1);

Engine.addProc(p2);

Engine.connectProcs(p1, 0, p2, 0, true);

// connect to another engine

Engine.connect("AnotherHostName", 5000);

// start the command-line shell API

Engine.runShell();

// triggers an action on a PROC

p1.start();

}

}

Figure 4: A DACIA application. The application's engine
connects to an engine running on another host. Subsequently,
connections can be established between remote PROCs, using
either the programming interface or the user command-line
interface (Figure 5).

We designed and implemented the PROC architecture

so that it can be easily extended through inheritance, by

simply adding component-speci�c data structures and

methods for message handling. We implemented a set

of �ve basic PROCs that can be used to build data dis-

tribution services. These PROCs provide primitives for

applying transformations to and �ltering the input data,

distributing data to multiple destinations, synchronizing

input data streams, splitting the items in an input data

stream and sending them alternately to multiple desti-

nations. Based on the base PROC class, each of these

PROCs has been implemented using 22-30 lines of code.

They can be easily customized by overloading the mes-

sage handling methods. Figure 6 presents the code for a

simple PROC.

class Forward extends Proc {

public Forward() {

super("Forward",1,1); // name, 1 input, 1 output

}

public void handleMessage(Message msg, int port) {

System.out.println("Message received: "

+ (String)msg.getData());

output(0,msg,1); // port_no, message, synchronous

}

public void handleAsyncMessage() {

Message msg = null;

while(true) {

synchronized(msgQueue) {

while(msgQueue.isEmpty() && !moving) {

try msgQueue.wait();

catch(Exception e) System.out.println(

"Forward exception:" + e.getMessage());

}

if(moving) return;

msg = getMessage(true);

}

System.out.println("Message received: " +

(String)msg.getData());

output(0,msg,0); //port_no,message,asynchronous

}

}

}

Figure 6: A simple PROC with one input and one output.
It prints the content of a message received on the input port
and then sends the message to the output port.

Component mobility is achieved through Java object

serialization. In order to be mobile, a PROC should

implement the Java Serializable interface. Since serial-

ization/deserialization can be expensive operations, we

optimized them by overloading Java's serialization meth-

ods. The state of a PROC (only the data that is speci�c

to that PROC) is compacted before it moves and it is re-

stored at the destination. The developer of a customized

PROC has the choice of either using the default Java

serialization and paying the corresponding performance

9



connect [hostname] [portnumber] - connect the local engine to another engine

connectProcs [sourceProcID] [sourcePortNo] [destProcID] [destPortNo] - connect two PROCs

disconnectProcs [sourceProcID] [sourcePortNo] - disconnect two PROCs

exit/quit - stop execution and exit

help - print a help menu

move [procID] [hostname] - move a PROC to the host indicated

print - print information about the local and remote PROCs and the application configuration

start [procID] - trigger an action on the PROC indicated

startMonitor - start the monitoring service that performs runtime adaptation

Figure 5: Command-line shell interface

penalty, or writing customized serialization code.

The Engine instantiating a PROC is device-aware and

it can choose the appropriate constructor for the PROC.

Thus, the PROC will have a representation correspond-

ing to the capabilities of the device.

The programming e�ort to transform a Java object

into a mobile PROC is modest. It consists of adding

a PROC wrapper to the object, connecting the object

to the message handling interface and eventually writ-

ing methods for serializing the state of the object. We

used 23 lines of code to transform a Java object for a

multi-user Chat program (it included a graphical inter-

face, with menus, input/output text areas, and buttons)

into a PROC. This PROC has one input and one output

port. It displays to an output text area the content of a

message received on the input port, and it sends to the

output port the message typed by a user in an input text

area.

5 DACIA Performance

5.1 Micro-benchmarks

To determine the overhead of using our framework to

execute an application, we compared the performance

of inter-PROC communication to the cost of raw TCP.

Using a small application consisting of two PROCs, we

determined the time needed for one PROC to send a

message to the other PROC and to receive a reply mes-

sage, for the cases in which the PROCs are located on the

same host (synchronous and asynchronous communica-

tion) or on di�erent hosts. We compared the results with

the cost of a request-reply using TCP, for the same pair

of machines located in a 10 Mbps LAN. We repeated

the experiments for a null message and for a message

of size 1000 bytes. For local communication, we used

a PentiumII 200 machine with 256 MB RAM, running

Linux. For remote communication, we also used a UL-

TRA SPARC 1 machine with 128 MB RAM, running

Solaris. The testing code was implemented in Java.

size local
sync

local
async

remote
PROCs

TCP

0 6.6 44 8400 3600
1000 6.6 44 28000 8200

Table 1: Comparison of inter-PROC communication with
raw TCP, for a null message and for a message of size 1000
bytes. From left to right, the columns represent: a) the
message size, b) local PROCs, synchronous communication,
c) local PROCs, asynchronous communication, d) remote
PROCs, e) TCP. The results, given in microseconds, have
been obtained by averaging over 10000 messages.

Table 1 shows that the cost of local communication is

much lower than the cost of remote communication, ei-

ther using PROCs or TCP. The message size does not af-

fect the cost of local communication. In this case, object

references are passed through procedure calls and data is

not actually copied. In the asynchronous case, the cost

of switching threads is added. Remote communication

between PROCs is slower than raw TCP, and the cost

grows signi�cantly with the message size, mostly due to

the cost of object serialization. Note that our current

implementation is only a prototype and optimizations

are possible.

Using the same two machines, we measured the time

needed to move a simple PROC between two hosts. The

10



average value obtained for a PROC that does not carry

any speci�c state, 130 msec, increases if the state size is

larger, due to the cost of object serialization.

Overall, the results presented show that the bene�t of

co-locating remote PROCs that exchange messages fre-

quently far outweighs the overhead of using our frame-

work instead of simple TCP to communicate across mul-

tiple hosts. Moreover, the cost of moving PROCs across

multiple hosts can be kept low.

5.2 Macro-benchmarks

The following experiment shows basic component inter-

action and mobility. It also performs adaptation and

component migration according to a simple heuristic.

We implemented a simple application that simulates the

consumption of certain resources by several client appli-

cations, which may be located on the same host with the

resources or on di�erent hosts. The goal of the exper-

iment is to show how the resource consumption can be

optimized by moving components around according to

the structure of the application, user requirements, and

the pattern of communication between various compo-

nents.

5.2.1 Experimental Setup

Figure 7 presents the structure of the application used

for this experiment. We use three types of PROCs:

Figure 7: The application structure. Through their corre-
sponding agents, clients submit requests for accessing vari-
ous resources . The location of a client is �xed, while the
resources and the agents can move from one host to another.

� Client - a PROC with a GUI (a frame with menus,

buttons, input and output text �elds). The user

can submit requests in an input window. An out-

put window displays status information. A Client

PROC can not move to a di�erent host, it has to

stay on the machine where it started, in order to

communicate with the user.

� Agent - acts on behalf of a client. Every client

has a corresponding agent. An agent discovers

and connects to various resources and it cooper-

ates with the resources to complete the client's re-

quests.

� Resource - represents the server side of the ap-

plication. A particular resource may be available

only at certain sites, and it can migrate from one

site to another.

An agent can be located on the same host as its client

(Agents 1, 3, and 4) or on a di�erent host (Agent 2).

Similarly, an agent can be located on the same host as

the resource accessed (Agents 1, 2, and 4) or on a di�er-

ent host (Agent 3). An agent can move from one host

to another according to the amount of data exchanged

among the PROCs and the availability of bandwidth and

processing power.

In our experiment, a client submits a sequence of re-

quests to its agent. In the status window, it displays the

time needed for the completion of each request, as well

as the average time over all the requests. A request ran-

domly targets either a resource local to the host where

the client is, or a resource located on a remote host.

A resource can move while a request is being served.

Resource movements are triggered at random intervals,

with values between 1 and 10 sec.

To complete a request, the agent sends a message to

the corresponding resource. In this experiment, using

the resource translates into using CPU cycles on the ma-

chine hosting the resource. The resource increments an

integer counter 10000 times and then sends a reply mes-

sage to the agent. This message exchange between the

agent and the resource repeats 500 times. At the end,

11



the agent informs the client about the completion of the

request.

We compared the case where the agent is �xed and

located on the same host with the client with the case

where the system adapts to the pattern of data exchange

between the PROCs and it moves to the host where the

resource is. For this experiment we used two machines

located in the same 10 Mbps Ethernet LAN: saturn (Pen-

tiumII 200, 256 MB RAM, running Linux) and sanjuan

(ULTRA SPARC 1, 128 MB RAM, running Solaris).

This experimental setup can be easily mapped to real

applications. Consider a meta-service for web searching

such as MetaCrawler [15]. A client is a web browser

through which a user can request various searches. An

agent is the search agent that queries various web servers

to discover the information requested, and �lters the re-

sults of the queries received from the web servers. Re-

sources represent the web servers or the back-end databases

behind these web servers. To complete a request, a

search agent may connect to one or multiple web servers

and exchange several messages with the web servers.

While talking to a particular web server, the agent may

be connected to various back-end nodes holding replicas

of the web data, as in [17]. The agent can either run

on the same host with the web browser or it can move

to the host where the resource accessed is, in order to

minimize the cost of communication with the resource.

5.2.2 Experimental results

Figure 8 presents the average time needed to complete

a request, as well as the standard deviation for several

measurements, for randomly generated requests. The

�rst two bars correspond to the cases where all three

PROCs (client, agent and resource) are located on the

same host. The third bar is for the case where the client

and the agent are located on the same host (saturn), and

the resource accessed is always located on sanjuan. The

fourth bar corresponds to the case where the client and

the agent are co-located on saturn, while the resource

accessed moves randomly between the two hosts. The

�fth case is similar, with the di�erence that the agent

may move once it detects that it is accessing a remote

resource and that the communication with the resource

is much more intense than the communication with the

client.

Figure 8: The time needed to complete a request for the
cases where all the PROCs are �xed and they are located
on the same host, or the PROCs are located on di�erent
hosts, or the resource accessed moves from host to host and
the system either does or does not adapt to these location
variations. The standard deviation is between .2% (second
bar) and 11% (�fth bar) of the average.

For each case, a run of the experiment corresponds

to a sequence of 100 to 1000 requests (depending on the

speed of execution for 1 request), for which we calcu-

lated the average latency. We repeated a run �ve times

and we calculated the average latency and the standard

deviation for each one of the �ve cases outlined above.

The �rst two bars highlight the di�erence between

the time needed to execute identical operations on the

two hosts. The third bar shows that the latency in-

creases dramatically if most of the communication be-

tween PROCs is done remotely. The last two bars prove

that in the adaptive case the latency is most of the time

lower than in the static case, and the simple heuristic

employed is useful in reducing the latency, by taking

advantage of the proximity of some of the PROCs. On

average, the latency in the adaptive case is about 4 times

lower than in the static one.

The non-adaptive case performs better than the re-

mote case (third bar), but worse than both local cases

(�rst two bars). The adaptive case performs better than

the non-adaptive one. It also performs better than the

12



local case on saturn. The explanation is that in this case

most of the communication between the agent and the

resource is handled locally, thus bringing the average to

a value between the values for local communication on

the two machines, saturn and sanjuan.

This experiment relies heavily on the cost of network

communication between various machines. Nevertheless,

it shows that by using some simple heuristics, according

to the speci�c structure of an application and the pattern

of communication between PROCs, the execution time

can be reduced signi�cantly compared to the static case

in which all the PROCs have �xed locations. Also, the

frequent PROC movements across machine boundaries,

under intense message exchange, prove the robustness

and correctness of our implementation.

6 Conclusions

In this paper, we present a framework for building and

executing adaptive distributed applications. Using DA-

CIA, an application can be easily constructed through

the 
exible composition of existing software components.

PROCs (Processing and ROuting Components) are the

basic building blocks for an application. PROCs interact

through standardized interfaces and they can be com-

posed in a variety of ways, subject to certain rules and

restrictions.

The novelty of our approach is that we allow the

PROCs in an application to be composed in multiple

ways, and we provide support for changing at runtime

the structure of the application. An application can be

recon�gured by replicating components, relocating some

components, or by replacing a set of components with

a di�erent set of components, possibly connected in a

di�erent con�guration. One of several equivalent com-

position schemes is chosen at runtime based on speci�c

environment conditions, resource availability, and appli-

cation requirements. Through runtime recon�guration,

a more eÆcient execution is achieved.

DACIA provides support for application and user mo-

bility. PROCs can move between hosts while maintain-

ing seamless connectivity with other PROCs. The struc-

ture of the application does not change and the 
ow of

data in the system is not interrupted.

Micro-benchmarks show that when components are

co-located, we are able to reduce the cost of communi-

cation between PROCs to the value of a few procedure

calls. Depending on the pattern of communication be-

tween various PROCs in a distributed application, the

overall cost of communication can be reduced through

PROC relocation.

We demonstrated the bene�ts of using DACIA on a

simple application. We showed that by using a simple

adaptive heuristics to recon�gure the application, the

execution time can be signi�cantly reduced compared

to the static case in which all the PROCs have �xed

locations.

Following we outline some of the issues we are cur-

rently working on or we intend to address in the future:

� Optimizing application performance through recon-

�guration: DACIA provides support for recon�guring an

application at runtime, according to some performance

metrics and the availability of resources system-wide.

The challenge is not to measure the performance of an

application (several solutions exist for this), but to use

this information to recon�gure the application. To do

this, we need to specify semantically meaningful policies

that are context-aware and can readily adapt to their

environment.

� Formal speci�cation: We are currently working on a

formal framework for specifying components, their prop-

erties, and the complex interactions between components.

This framework allows the speci�cation of rules for com-

posing components and for de�ning equivalent composi-

tion schemes. We intend to build tools that use a set of

composition rules manually created to automatically de-

rive new composition rules. This formal framework also

provides support for de�ning and implementing adaptive

policies used to recon�gure an application.

� Deployment and experimental evaluation: More ex-

perience is needed to evaluate the e�ectiveness of our

model in building and executing adaptive distributed ap-

13



plications. We also need to assess the usefulness of com-

ponent mobility to users by implementing some practical

applications and testing them on a larger user popula-

tion. We intend to use DACIA to implement and test

larger-scale applications. We would like to determine the

complexity and the overhead of performing adaptation

and PROC relocation.

� Interoperability of PROCs and services: The pro-

gramming model proposed can be extended by allowing

PROCs to connect to services, as in Sun's Jini [11], as

opposed to connecting to other PROCs. In this case, the

engine will be responsible for connecting a PROC not to

a speci�c PROC, but to one of potentially many PROCs

implementing a speci�c function. A lookup service is

needed to locate the PROCs implementing the desired

service.

7 Acknowledgments

This work is supported in part by the National Science

Foundation under Grant No. ATM-9873025.

References

[1] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting
to Network and Client Variability via On-Demand Dynamic
Distillation. In Proceedings of the Seventh International ACM
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS '96), Cambridge,
MA, Oct. 1996.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[3] B. Garbinato and R. Guerraoui. Using the Strategy Design
Pattern to Compose Reliable Distributed Protocols. In Pro-
ceedings of the 3rd USENIX Conference on Object-Oriented
Technologies and Systems (COOTS '97), pages 165{171,
Phoenix, AZ, June 1997.

[4] Object Management Group. CORBA Services: Common Ob-
ject Service Speci�cation. Technical report, Object Manage-
ment Group, July 1998.

[5] M. Hayden. The Ensemble System. Technical Report TR98-
1662, Cornell University, Jan. 1998.

[6] O. Holder, I. Ben-Shaul, and H. Gazit. System Support for
Dynamic Layout of Distributed Applications. In Proceedings
of the 19th International Conference on Distributed Comput-
ing Systems (ICDCS'99), pages 403{411, Austin, TX, May
1999.

[7] N. C. Hutchinson and L. L. Peterson. X-Kernel: An architec-
ture for implementing network protocols. IEEE Transactions
on Software Engineering, 17(1):64{76, Jan. 1991.

[8] A Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gi�ord, ,
and M. F. Kaashoek. Rover: A Toolkit for Mobile Informa-
tion Access. In Proceedings of the Fifteenth Symposium on
Operating Systems Principles, Copper Mountain, CO, Dec.
1995.

[9] R. Litiu and A. Prakash. Adaptive Group Communication
Services for Groupware Systems. In Proceedings of the Sec-
ond International Enterprise Distributed Object Computing
Workshop (EDOC'98), San Diego, CA, Nov. 1998.

[10] S. Lu, K.-W. Lee, and V. Bharghavan. Adaptive Service in
Mobile Computing Environments. In Proceedings of IFIP
IWQoS '97 (International Workshop on Quality of Service),
New York, NY, May 1997.

[11] Sun Microsystems. Jini Connection Technology,
http://www.sun.com/jini/.

[12] D. Mosberger and L.L. Peterson. Making Paths Explicit in
the Scout Operating System. In Proceedings of OSDI '96,
pages 153{168, Oct. 1996.

[13] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile Application-Aware Adap-
tation for Mobility. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP '97), Saint-
Malo, France, Oct. 1997.

[14] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin,
D. Orr, and R. Sanzi. Mach: A Foundation for Open Systems.
In Proceedings of the Second Workshop on Workstation Op-
erating Systems(WWOS2), Sep. 1989.

[15] E. Selberg and O. Etzioni. Multi-Service Search and Compar-
ison Using the MetaCrawler. In Proceedings of the 4th World
Wide Web Conference, pages 195{208, 1995.

[16] R. van Renesse, K.P. Birman, and S. Ma�eis. Horus, a 
ex-
ible Group Communication System. Communications of the
ACM, Apr. 1996.

[17] V.Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware Request
Distribution in Cluster-based Network Servers. In Proceed-
ings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-VIII), San Jose, California, October 1998.

[18] M. Yarvis, P. Reiher, and G. J. Popek. Conductor: A Frame-
work for Distributed Adaptation. In Proceedings of the Sev-
enth Workshop on Hot Topics in Operating Systems (HotOS
'99), March 1999.

[19] B. Zenel and D. Duchamp. A General Purpose Proxy Fil-
tering Mechanism Applied to the Mobile Environment. In
Proceedings of MobiCom '97, Budapest, Hungary, Oct. 1997.

[20] H. Zimmermann. OSI reference model - the ISO model of
architecture for open systems interconnection. IEEE Trans-
actions on Communications, 28(4):425{432, Apr. 1980.

14


