
Topological Mapping and Navigation in Real-World
Environments

by

Collin Eugene Johnson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering and Computer Science)

in the University of Michigan
2018

Doctoral Committee:

Professor Benjamin Kuipers, Chair
Associate Professor Odest Chadwicke Jenkins
Assistant Professor Matthew Johnson-Roberson
Associate Professor Edwin Olson

Collin Eugene Johnson

collinej@umich.edu

ORCID iD: 0000-0002-0606-8423

©Collin Eugene Johnson

2018

Dedication

To my family

ii

TABLE OF CONTENTS

Dedication . ii

List of Figures . vi

List of Tables . viii

List of Appendices . ix

Abstract . x

Chapter

1 Introduction . 1

1.1 Supporting Mapping and Navigation . 1
1.2 Topological Mapping . 2
1.3 Contributions . 5

1.3.1 Place Detection and Classification 5
1.3.2 Large-Scale Robotic Mapping 7
1.3.3 Socially-Aware Navigation in Dynamic Environments 7

2 Background and Related Work . 9

2.1 Topological Mapping . 9
2.2 Place Detection and Labeling . 11
2.3 Probabilistic Topological Mapping . 13
2.4 Socially-Aware Navigation in Human Environments 15

3 The Hierarchical Hybrid Spatial Semantic Hierarchy 18

3.1 The Hybrid Spatial Semantic Hierarchy 18
3.1.1 Local Metrical Layer . 19
3.1.2 Local Topological Layer . 19
3.1.3 Global Topological Layer . 22

3.2 H2SSH Overview . 23
3.3 H2SSH Local Metrical Layer . 26
3.4 H2SSH Local Topological Layer . 26

3.4.1 Local Topological Location . 30
3.5 H2SSH Global Topological Layer . 32

3.5.1 From Local Areas to Global Areas 32
3.5.2 Hierarchical Regions . 34

iii

3.5.3 Global Topological Location . 36
3.5.4 Global Topological Example . 36

3.6 Discussion . 38

4 Place Detection and Labeling Using Affordances 42

4.1 Place Detection for Topological Mapping 42
4.2 Locating Potential Gateways . 44

4.2.1 Calculating the Isovist Field . 45
4.2.2 Finding Potential Gateways . 46

4.3 Classification Problem Formalization . 48
4.3.1 Area Label Probability . 48
4.3.2 Gateway Boundary Probability 51
4.3.3 Area Label Constraints . 51
4.3.4 Factor Graph Formalization . 51

4.4 Place Classification with MCMC . 53
4.5 Incremental Place Detection . 56
4.6 Detecting Topological Events . 58
4.7 Discussion . 59

5 Evaluating Topological and Semantic Abstractions 61

5.1 Cell-by-Cell Evaluation . 62
5.2 Topological Error Evaluation . 66

5.2.1 Route Edit Distance . 67
5.2.2 Topological Edit Distance . 69

5.3 Human Labeling Variability . 69
5.4 Discussion . 71

6 Scalable Topological Mapping Using Lazy Evaluation 75

6.1 The Topological Mapping Problem . 75
6.2 Probabilistic Tree of Maps . 78
6.3 Map Hypothesis Probability . 79

6.3.1 Local Transition Cycle Likelihood, p(cK |AnK ,Mn
K) 80

6.3.2 Place Layout Likelihood, p(ΛK |χnK ,Mn
K) 80

6.3.3 Area Compatibility Likelihood, p(mK |χnK ,Mn
K) 81

6.3.4 Map Hypothesis Prior . 82
6.4 Lazy Evaluation of Map Hypotheses . 82
6.5 Loop Closures in the H2SSH . 86
6.6 Results . 88
6.7 Discussion . 91

7 Socially-Aware Navigation Using Topological Maps and Social Norm Learning 93

7.1 Social Norms for Navigation . 93
7.2 Situations for Topological Navigation 95
7.3 Topological Intention Estimation . 96
7.4 Learning Navigation Social Norms . 98

7.4.1 Learning Norms for Path Segments 100

iv

7.4.2 Learning Norms for Transitions 101
7.5 Socially-Aware MPEPC . 101
7.6 Experimental Methods and Results . 103

7.6.1 Lateral Position During Navigation 104
7.6.2 Oncoming Pedestrian Avoidance Behavior 106

7.7 Discussion . 108

8 Discussion . 110

8.1 Conclusion . 110
8.2 Future Work . 112

8.2.1 Robust Topological Mapping . 112
8.2.2 Region-based Hierarchical Mapping 112
8.2.3 Predicting Pedestrian Collision Zones 113

Appendices . 115

Bibliography . 144

v

LIST OF FIGURES

1.1 An example of the H2SSH map of an office environment. 6

3.1 The flow of data through the HSSH. 19
3.2 Example LPMs constructed during navigation of an office building. 20
3.3 A place within the Local Topological layer of the HSSH. 21
3.4 The representation of paths in the HSSH. 22
3.5 The ontology of space used to represent the world in the H2SSH. 25
3.6 An example of a path segment in the H2SSH. 29
3.7 Examples of places and their transition cycles in the H2SSH. 31
3.8 An example of the H2SSH map of a portion of North Campus. 37
3.9 The region hierarchy for North Campus in H2SSH. 39
3.10 A comparison of the topological maps of an environment in the HSSH and

H2SSH. 40

4.1 An illustration of the algorithm for finding gateways. 44
4.2 The eccentricity isovist field of the third floor of the Beyster building. 46
4.3 A split isovist used for computing the boundary gradient. 47
4.4 The factor graph representation of a T-intersection. 52
4.5 Examples of the transformations sampled by our MCMC algorithm. 55
4.6 Area labels changing due to robot exploration. 57

5.1 Results for comparison maps. 62
5.2 Cell-by-cell results for all test maps. 64
5.3 Labeled maps of environments. 65
5.4 Discrepancies between Fr79 and Intel maps. 66
5.5 Route edit distance results for all test maps. 68
5.6 Labeled map of the Intel environment. 70
5.7 Comparison of human-vs-human and MCMC-vs-human labeling performance. 72
5.8 Human variability results for intel . 73

6.1 Topological map of the Infinite Corridor dataset. 77
6.2 Tree of maps for the Infinite Corridor dataset. 78
6.3 Example of good and bad topological loop closures. 81
6.4 The topological map constructed of eecs3. 88
6.5 The number of map hypotheses evaluated at for each topological event. 89
6.6 The number of leaves in the tree of maps at each event. 90

vi

7.1 A variety of situations encountered by the robot 96
7.2 An example goal likelihood for a pedestrian 98
7.3 Evolution of goal probabilities using intention estimation. 99
7.4 Examples of cost maps used to define the social norm navigation function. . . 102
7.5 The test environment used for evaluation SA-MPEPC. 104
7.6 Distributions over robot position. 105
7.7 Distributions over observed agent positions. 105
7.8 2D histograms of the robot-pedestrian interactions. 107

A.1 Evaluation maps for intel . 116
A.2 Evaluation maps for csail . 117
A.3 Evaluation maps for infinite corridor . 118
A.4 Evaluation maps for sdr . 119
A.5 Evaluation maps for abuilding . 120
A.6 Evaluation maps for aces3 . 121
A.7 Evaluation maps for oregon . 122
A.8 Evaluation maps for seattle . 123
A.9 Evaluation maps for fr79 . 124
A.10 Evaluation maps for bbb3 . 125
A.11 Evaluation maps for bbbdow1 . 126
A.12 Evaluation maps for eecs3 . 127
A.13 Evaluation maps for ggb1 . 128
A.14 Evaluation maps for ggb2 . 129
A.15 Evaluation maps for ggb3 . 130
A.16 Evaluation maps for pierpont1 . 131
A.17 Evaluation maps for tufts3 . 132
A.18 Human variability results for bbb3 . 134
A.19 Human variability results for bbbdow1 . 135
A.20 Human variability results for csail3 . 136
A.21 Human variability results for eecs3 . 137
A.22 Human variability results for intel . 138
A.23 Human variability results for pierpont1 . 139

B.1 Dynamic objects surrounding the robot. 142

vii

LIST OF TABLES

3.1 The Local Topological representation of the HSSH. 21
3.2 The Global Topological representation of the HSSH. 23
3.3 The Local Topological representation in the H2SSH. 28
3.4 The Global Topological representation in the H2SSH. 35

4.1 Individual isovist features used to calculate appropriateness. 49
4.2 Area-based features used to calculate appropriateness. 50

5.1 Comparison of cell-by-cell accuracy of place classification approaches. (%) . . 63
5.2 Statistics for cell-by-cell accuracy across all test maps. 64
5.3 Summary of the route edit distance for all test maps. 67
5.4 Zero error rate for all test maps. 68
5.5 Comparison of topological edit distance. 69
5.6 Variability of MCMC and human labels compared against human labelings. . . 71

6.1 Definition of symbols used to describe the probabilistic tree of maps. 79

7.1 Distribution of normalized distance for the robot and observed agents. 106
7.2 Comparison of oncoming passing behaviors. 107

viii

LIST OF APPENDICES

A Ground-truth Labeled Maps . 115

B Multi-laser Pedestrian Tracking . 140

ix

ABSTRACT

Topological Mapping and Navigation in Real-World Environments

by

Collin Eugene Johnson

Chair: Benjamin Kuipers

x

We introduce the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH),
a hybrid topological-metric map representation. The H2SSH provides a more
scalable representation of both small and large structures in the world than
existing topological map representations, providing natural descriptions of a
hallway lined with offices as well as a cluster of buildings on a college campus.
By considering the affordances in the environment, we identify a division of
space into three distinct classes: path segments afford travel between places at
their ends, decision points present a choice amongst incident path segments, and
destinations typically exist at the start and end of routes.

Constructing an H2SSH map of the environment requires understanding
both its local and global structure. We present a place detection and classification
algorithm to create a semantic map representation that parses the free space in the
local environment into a set of discrete areas representing features like corridors,
intersections, and offices. Using these areas, we introduce a new probabilistic
topological simultaneous localization and mapping algorithm based on lazy
evaluation to estimate a probability distribution over possible topological maps
of the global environment. After construction, an H2SSH map provides the nec-
essary representations for navigation through large-scale environments. The local
semantic map provides a high-fidelity metric map suitable for motion planning in
dynamic environments, while the global topological map is a graph-like map that
allows for route planning using simple graph search algorithms.

For navigation, we have integrated the H2SSH with Model Predictive Equi-
librium Point Control (MPEPC) to provide safe and efficient motion planning
for our robotic wheelchair, Vulcan. However, navigation in human environments
entails more than safety and efficiency, as human behavior is further influenced by
complex cultural and social norms. We show how social norms for moving along
corridors and through intersections can be learned by observing how pedestrians
around the robot behave. We then integrate these learned norms with MPEPC to
create a socially-aware navigation algorithm, SA-MPEPC. Through real-world
experiments, we show how SA-MPEPC improves not only Vulcan’s adherence to
social norms, but the adherence of pedestrians interacting with Vulcan as well.

xi

CHAPTER 1

Introduction

Unlike the well-engineered and well-mapped road networks, indoor environments, like of-
fice buildings, hospital complexes, or college campuses, contain a vast variety of geomet-
ric structures. These indoor environments are complex, easily spanning dozens of floors
and containing hundreds of rooms, intersections, and hallways. Yet an environment’s size
only partially captures its complexity. These environments, along with smaller environ-
ments like individual homes and apartments, contain a variety of situations that vary over
time or with the robot’s perspective, including densely-crowded hallways, corridors with
doors frequently opening and closing, cluttered rooms, furniture that occasionally moves,
and specular surfaces, like glass walls and metal chair legs, that are often invisible to the
robot’s sensors. Addressing the scale and complexity of these environments is essential for
enabling service robots to operate robustly in everyday life.

1.1 Supporting Mapping and Navigation

Recent work on simultaneous localization and mapping (SLAM) has made considerable
progress towards the goal of robust robotic mapping of large-scale environments. Using
a novel sensing solution, a full SLAM system has been deployed on a consumer floor-
cleaning robot [1]. New algorithms for graph-based metrical mapping are robust to sub-
stantial data association errors [2, 3, 4, 5]. Appearance-based approaches can successfully
detect loop closures after driving hundreds of kilometers [6] and can successfully local-
ize across extreme environmental changes [7]. Probabilistic techniques have been applied
to topological mapping [8, 9, 10] that allow mapping large environments by avoiding the
exponential growth inherent in the topological mapping problem.

Despite these successes, considerable work remains to achieve the goal of long-term,
large-scale mapping and navigation. Though additional problems will arise, we iden-
tify four capabilities any mobile robot navigation system must have to support long-term,

1

large-scale mapping and navigation. First, the SLAM algorithm used for constructing the
robot’s representation of the environment must be scalable over large distances. Second,
this SLAM algorithm must also be scalable across long time durations. Third, the map rep-
resentations and algorithms must support robust localization and mapping, both locally and
globally, even in the presence of limited sensing, dynamic objects, and quasi-static changes
in the environment. Fourth, the constructed map must contain enough information for the
robot to plan and navigate a route from its current location to any other reachable location
in the map.

This thesis introduces a new hybrid topological-metrical map representation, the Hi-
erarchical Hybrid Spatial Semantic Hierarchy (H2SSH), that extends the Hybrid Spatial
Semantic Hierarchy (HSSH) [11], which represents the robot’s environment using four dis-
tinct layers that provide metrical and topological representations of both small-scale and
large-scale space. The H2SSH improves on the HSSH by providing hierarhical representa-
tions of both local and global space that improve the scalability of the topological mapping
problem. The improved representation also provides a more human-like description of the
environment to be facilitate human-robot interaction.

Constructing an H2SSH map requires a new approach to topological place detection.
Our approach extends previous work in semantic place classification [12, 13] to allow iden-
tification of a set of place labels for an environment that are consistent with an underlying
knowledge representation, in our case, the H2SSH.

Once places can be detected, we show how lazy evaluation can be used for topological
SLAM to avoid the expontential growth inherent in the topological mapping problem. This
lazy evaluation algorithm allows scalable topological mapping of real-world environments.

In the remainder of this chapter, we first discuss the benefits and drawbacks of existing
work for topological mapping that form the foundation of the contributions of this thesis.
We then describe in detail the contributions outlined in the preceding paragraphs.

1.2 Topological Mapping

Topological mapping is the process of abstracting a continuous spatial environment into
discrete areas, discovering the connectivity among these areas, and thus, identifying the
underlying decision structure of the environment. Topological mapping abstracts the con-
tinuous experience of the robot into a discrete sequence of topological events. These events
correspond to the robot’s arrival at or departure from an area, which might be a hallway in-
tersection or the region around a visually distinct landmark. A constructed topological map
is a graph-like abstraction of large-scale space that represents the world as two types of

2

areas: places, where qualitatively distinct decisions are presented to the robot, and paths,
which are connections between places. This graph-like abstraction provides a number of
benefits for mapping.

Parsing the environment into small, discrete areas, as in a topological map, separates
local structure from global structure. This distinction between the local and global structure
of the environment allows the mapping problem to be factored into smaller, more easily
solvable parts. For example, high-precision metrical mapping is only required within the
robot’s sensory horizon. Similarly, a topological map provides a useful representation for
planning by factoring the motion planning problem into: (a) a simple graph search through
large-scale space, and (b) metric motion planning in small-scale space.

A topological map is a symbolic representation whose places and paths describe the
affordances (opportunities for action) in the environment. In this way, the size of a topo-
logical map is a function of the structure of environment itself and not of the trajectory the
robot takes through the environment or the time spent in the environment, as is the case for
the pose graphs typically used in metrical graph-based SLAM. As a result, long-term topo-
logical mapping does not require special operations to prune information from the map.
Instead, as the robot repeatedly travels through an environment, the model for each area in
the map can be improved as additional observations are made. For example, the improved
models can allow the robot to recognize the movement of furniture or doors opening and
closing.

Finally, a topological map is a human-like representation of the environment. The sim-
ilarity in representation can ease human-robot interaction, as it provides natural interfaces
for commanding the robot and describing the environment.

Topological maps are not suited to all mobile robot tasks, but a wide variety of robots,
like telepresence robots, smart wheelchairs, and indoor delivery robots, are emerging that
can benefit from a topological map abstraction. Common among these robots are operat-
ing in structured human environments and interacting with or receiving commands from a
human operator. Additionally, the primary purpose of these robots is to move reliably from
one place to another, as opposed to producing a metrically accurate map for further use by
human operators, e.g a reconnaissance robot.

Existing topological SLAM algorithms suffer problems with scalability and robustness
to change and sensing errors. These problems are not unique to topological SLAM and, as
mentioned above, scalability and robustness to errors are major focuses of current metri-
cal SLAM research [3]. However, given the difference between metrical and topological
SLAM, problems with scalability and robustness manifest themselves in different ways.
As a result, solutions to these problems will differ.

3

A topological map is a sparse representation of the environment that abstracts even
large environments into a relatively small number of areas. However when performing
topological SLAM, the number of possible topological maps can grow hyper-exponentially
with the number of areas visited by the robot [14]. Even though a topological map is a much
sparser representation of the environment than a metrical map, the number of areas visited
by a robot while exploring a typical environment, like a single floor of a building, will make
explicit enumeration of all possible topological maps intractable.

Avoiding the explosion of possible map hypotheses has been a major focus of research
in topological mapping. Some approaches use an active exploration strategy to bound the
number of potential map hypotheses by limiting the size of loops closed and using some
variant of a breadth-first search through the environment [15, 16]. However, these active
exploration approaches cannot be readily applied to service robots under the direction of a
human because the routes taken by the robot are specified by the human user.

Recently, probabilistic algorithms for topological mapping have emerged [8, 17]. Prob-
abilistic topological mapping algorithms incorporate metric and appearance information to
focus the search for the correct map on the most probable hypotheses or to assert a loop clo-
sure only when the posterior is extremely peaked around a single place. These approaches
rely on pruning the space of possible topological maps, either using a particle filtering
approach [8] or explicitly discarding low-probability map hypotheses [17]. These pruning-
based approaches are able to map large environments, but always risk discarding (or never
generating) the correct topological map. Specifically, if an erroneous measurement causes
the correct hypothesis to be removed from the hypothesis space, then the correct map can
never be found.

Another problem for the use of existing topological SLAM algorithms is their assump-
tion that the underlying topological structure of the environment is static. A door opening
or closing, for example, will be detected as an inconsistency in the topological map, which
results in the map being discarded by the SLAM algorithm. Consequently, topological
maps become brittle in real-world environments where the state of doors is continually
changing, a potentially severe limitation. A similar situation occurs when there is a false
positive or false negative place detection. In both cases, the correct topological map of
the environment cannot be recovered. As a result, successful topological mapping requires
perfect place detection, which experience has shown to be impractical in many situations.
This thesis does not solve this problem, but the presented lazy evaluation algorithm can
be extended to detect and recover from place detection failures, as discussed in our future
work Section 8.2.1.

4

1.3 Contributions

This thesis presents solutions to the scalability problems for topological mapping. We
present both representational and algorithmic approaches for dealing with the inherent
complexity of the real world. Our primary contributions to topological mapping are two-
fold. First, we introduce a new topological map representation better able to explain ev-
eryday environments. This representation allows us to relax many of the assumptions
necessary for reliable place detection in the HSSH. To evaluate this method, we demon-
strate place detection and topological SLAM in a variety of standard and newly-collected
datasets. Second, we adopt an entirely probabilistic approach to both topological place
detection and the global topological SLAM problem. We show how probabilistic tech-
niques allow for robust and scalable construction of topological maps in large, non-static
environments spanning multiple connected buildings.

The H2SSH extends the HSSH representation in three significant ways. First, by con-
sidering the types of actions supported by a topological map – traveling along paths and
transitioning between places – we identify a distinction between two types of places, deci-
sion points and destinations, which allows the H2SSH to represent an environment in more
detail without affecting the size of environments that can be feasibly mapped. Second, we
represent path segments as more than simple graph edges connecting two places. In the
H2SSH, each path segment now contains a sequence of zero or more destinations along
each side. Whereas before, each room along a corridor resulted in a decision point outside
its door with a zero-length path segment between the room and decision point, we now
represent this situation more naturally as a simple transition between a path segment and
destination (see Figure 1.1). Third, the H2SSH supports a hierarchy of topological maps,
such that a place in one topological map can itself be a topological map. These nested
topological maps provide a scalable description of common environments like multifloor
and multi-building office and college campuses.

1.3.1 Place Detection and Classification

In the HSSH, Beeson et al.[11] detect and define places in small-scale space using gate-

ways. A gateway specifies either the boundary of a place neighborhood along an edge of
the extended Voronoi graph or the direction of unexplored space along a path segment.
Gateways and obstacles are combined to define the boundary of a place. Places and paths
are distinguished using a simple approach: a region containing exactly two well-aligned
gateways is a path segment, and any other region, i.e. intersections and dead ends, is a
place neighborhood. Furthermore, place detection occurs within a small scrolling metric

5

(a) (b)

Figure 1.1: (a) shows the occupancy grid of a typical office environment. The corresponding
H2SSH-style topological map of the building is shown in (b). The lines are path segments, the
squares are decision points, and the diamonds are destinations, each office is a single destination
connected to its adjacent hallway.

map centered on the robot.
The H2SSH extends the HSSH representation which requires the place detection and

classification algorithms to also change. Most importantly, we must now distinguish be-
tween decision points, destinations, and path segments. We use a two-step probabilistic
algorithm to parse a metric map into a discrete set of non-overlapping areas. First, we iden-
tify potential gateway boundaries between areas in the environment. Second, we search
the hypothesis space of areas defined by these boundaries to find a high-probability set of
labeled areas consistent with the H2SSH representation, for example a decision point must
be at the intersection of two or more path segments.

The output of our place classification algorithm is a set of non-overlapping labeled
areas that define the topological structure of the local environment. This set of areas is
converted into a local topological graph, which consists of nodes that represent areas and
edges that correspond to gateway boundaries between areas. As the robot drives through
the environment, it moves from one node in the local topological graph to another. The
transition from one node to another node occurs whenever the robot crosses a gateway
boundary separating two areas.

The sequence of nodes of the graph visited by the robot as it explores the environment
provides a topological description of the robot’s motion through the environment. We can
then use this sequence to construct a global topological map of the large-scale environment.

6

1.3.2 Large-Scale Robotic Mapping

We present a lazy evaluation algorithm for probabilistic topological mapping that incre-
mentally builds and searches a tree of map hypotheses to provide a usable map hypothesis
online, while still guaranteeing the correct map can eventually be found. Our algorithm
annotates each leaf of the tree with a posterior probability. When a new place is encoun-
tered, new map hypotheses are expanded based on this posterior probability along with a
proposal distribution drawn from local sensor data, which means that only the most prob-
able hypotheses are expanded. By focusing on the most probable hypotheses, we dra-
matically reduce the number of hypotheses evaluated, allowing real-time operation and
tractable mapping of large environments. Additionally, our approach never prunes consis-
tent hypotheses from the tree, which means the correct hypothesis always exists somewhere
in the tree and can eventually be recovered.

1.3.3 Socially-Aware Navigation in Dynamic Environments

Navigation through a topological map consists of route planning through the graph defined
by the map followed by local planning through each place to follow the prescribed route.
The ease of route planning through even massive environments is an advantage of topolog-
ical maps over metric maps. Additionally, this thesis shows how topological information
can improve a robot’s ability to plan and navigate locally in metric maps.

The benefits to metric planning can be seen by considering the semantic information
encoded in a topological map. Each place in the map defines a small, discrete set of possible
actions used for navigating through the global environment. These actions are inspired by
the human cognitive map of the environment [18, 19], and therefore can be used to describe
how a human is moving through the global environment. Consequently, predicting the goal
for a person becomes a simple estimation problem. We present a recursive Bayes solution
to pedestrian goal prediction, along with improved trajectory estimation.

Similarly, the correspondence between the topological map and the human cognitive
map allows the robot to understand how to move through the environment as a human
would. In particular, the robot can gain an understanding of social norms associated with
navigation through indoor environments – stay to the right and don’t make tight left turns
around corners – which allows it to move through the environment and interact with hu-
mans more naturally. We show hows these social norms can be learned from observing
pedestrians around the robot and integrate them with an MPEPC-based planner [20] to cre-
ate a new socially-aware navigation algorithm, SA-MPEPC. Using real-world experiments,
we then show how SA-MPEPC improve the robot’s adherence to social norms while nav-

7

igating through the environment. Our experiments also show that the robot’s improved
behavior also improves the adherence to social norms of pedestrians interacting with the
robot.

8

CHAPTER 2

Background and Related Work

2.1 Topological Mapping

A topological map is a symbolic representation of space built by abstracting the robot’s
continuous experience of the environment into a discrete sequence of events, such as enter-
ing a place, exiting a place, or turning around on a path. Similarly, a planned route through
a topological map is a sequence of actions that describe the topological decisions that must
be made to carry the robot from one location in the map to another. Thus, both construc-
tion of and navigation within a topological map depend on its definition of place, or more
broadly, on the way the robot understands the qualitative structure of its local surround
within the environment.

Central to this qualitative understanding of the environment is the idea that the world
can be represented as a set of interconnected distinctive places, a concept similar to the
cognitive maps people construct of their environment [18]. Places in the topological map
occur at distinctive states in the environment, while paths indicate that a navigable route
exists between the places at either end.

The path representations used in topological maps are largely the same across all ap-
proaches. A path has a place at each end and indicates that traveling along the path with
take the robot between these places. Some approaches, especially more recent probabilistic
methods [17], annotate paths with metrical information, such as the length, whereas others,
like the SSH, define a control law to use for navigation along the path. Path segments in
the SSH [21] are wall-following control laws to guide the robot from one distinctive state
to another. Similarly, Choset and Nakatani [22] create paths along the edges of the Voronoi
skeleton equidistant to exactly two obstacles. In the HSSH, Beeson et al. [11] define path
segments as parts of the world where exactly two aligned gateways exist.

The SSH [21] and the HSSH [11] extend the concept of a path to a higher-level construct
in the environment. Instead of a path connecting the places at either end, a path consists

9

of a sequence of places with each sequential pair of places along the path connected by a
path segment. Thus, a path segment in the SSH and HSSH is the same as a path in other
approaches.

Unlike paths, numerous representations have been used for the place abstraction in
the topological map. These representations can be broadly divided into two categories:
structural places and landmark places.

A structural place is a location where the geometric structure of the robot’s local envi-
ronment changes in such a way that new actions are available to the robot. These locations
occur at the intersection of hallways, near office doors, and in other similar situations.
A key feature for structural place is that the description of the place defines the actions
available to the robot at that place. The description may include the angle of an incident
path [23], the branch of the Voronoi skeleton to follow [22], the control law to follow [21],
or the gateway to cross [11].

A landmark place is a description of the robot’s perception of the environment at a par-
ticular location, which depends on the robot’s sensors. For example, the richness of a visual
sensor may result in landmarks occurring in parts of the environment that are unremarkable
to a laser rangefinder. The features used to represent the place varies from a bag-of-words
description of visual features [6], a bubble space representation of the spherical distribu-
tion of relevant features [24], or a simple occupancy grid [8]. Two common strategies for
creating landmark places are to create them at fixed intervals based on time or distance
traveled [6], to find locations where sensor measurements jump unexpectedly [25], where
co-visibility of features changes [26], or where a qualitative change in the feature-based
description of the environment is found [27].

Based on the place representation – structural or landmark – we can classify a topo-
logical map as being either a structural topological map or a landmark topological map.
The most important difference between structural and landmark topological maps is in the
semantics of their places. Structural places directly encode the topological actions avail-
able in the environment, whereas landmarks, which may occur in similar locations, provide
only a feature-based description of the location’s appearance. A structural map, therefore,
provides the robot with information on both where it is in the environment and how to plan
a route and travel to a new place in the map. In contrast, a landmark map can only tell the
robot where it is, leaving some other process to plan and travel routes through the map.

While the semantics of structural and landmarks maps differ, they both use the same
fundamental abstraction of places and paths. We argue that this simple division of the
environment into two categories is insufficient for building topological maps of large-scale
environments.

10

Topological approaches create a symbolic description of the environment that repre-
sents vertices in the environment as discrete places corresponding to spaces like intersec-
tions and rooms. These places are connected by paths, like hallways, which form the edges
in the graph. A topological map supports wayfinding using simple graph search algorithms
like A*. The route found through the topological map is well-defined sequence of actions
to take at each vertex.

2.2 Place Detection and Labeling

The H2SSH introduces two categories of places, decision points and destinations. As a
result, topological map construction requires not only detecting where a place is, but also
what type of place it is. This problem is generally described as place classification or
labeling.

Mozos et al. [12] learn a classifier for individual laser scans using AdaBoost. As the
robot drives through the environment, it labels each scan the robot takes based on the clas-
sifier. Areas are then defined by continuous regions that receive the same classification.
Recent work by Goeddel et al. [28] applies a convolutional neural network to Mozos’ data
and shows how it improves on the hand-selected features that have predominantly used to
date.

One difficulty with classifying individual laser scans or local map patches is a lack
of consistency between adjacent scans because information about the adjacency relations
in the environment are lost. To address these inconsistency issues, Friedman et al. [13]
incorporated connectivity features based on the Voronoi skeleton, like the minimum-length
loop in the skeleton, with a conditional random field to improve the consistency of place
classification. Shi et al. [29] introduced additional graph centrality measures of the Voronoi
skeleton to further improve labeling accuracy, and Liao et al. [30] use a hierarchical voting
scheme based on the branching structure of the Voronoi skeleton of an environment. An
alternative approach by Pronobis et al. [31] integrates spatio-temporal information about
the labels associated along the robot’s trajectory through the environment to improve the
consistency of the semantic labels.

Friedman et al. [13] introduced Voronoi random fields. The Voronoi random field adds
information about the connectivity of the environment to the classifier based on the Voronoi
graph. The connectivity information helps create a more consistent labeling of locations in
the environment. Shi et al. [29] further the work of Friedman et al. by including additional
features about the structure of the environment, including centrality metrics and a variety
of laser-based features. We also use centrality features in our work, though we additionally

11

consider centrality within the visibility graph of the environment. Finally, Liao et al. [30]
use the Voronoi skeleton at multiple levels of detail in conjunction with a voting scheme
and automatic feature learning using deep network to achieve the highest accuracy place
classification to date.

While we leverage the Voronoi skeleton for our approach, we use the connectivity in-
formation in the environment in a different way. In the above approaches, the way places
are connected in the environment is an implicit part of the feature space for classification.
In contrast, we have an explicit representation that specifies how places can be connected in
the environment. This explicit representation ensures that strange results like corridors in
the middle of rooms or vice versa cannot occur. Therefore, the final set of labeled places in
the environment has a logical structure, even when it diverges from human-labeled ground
truth.

Similar to our approach of creating an initial segmentation of the environment and then
classifying the segments, Brunskill et al. [32] use spectral clustering of a simple graph rep-
resentation of the environment to produce a segmentation of the environment. They then
apply a learned classifier based on [12] to label the segmented regions. Liu et al. [33] dis-
cuss known problems with spectral clustering, like inconsistent results due to parameters,
and propose an alternate segmentation approach using a mutual information graph, which
results in a more robust and consistent segmentation of the environment. However, their
approach can still generate noisy, meaningless areas that they must later filter out.

Markov chain Monte Carlo (MCMC) sampling for place classification has also been
used by Liu and von Wichert [34]. They use a dramatically different approach, whereby
they create a generative model of possible worlds and sample from this distribution to create
a semantic map of the environment. Beginning from simple rules (a room is rectangular
with four walls, a room has at least one door, each cell belongs to one room), they use
extracted line segments and free space to evaluate hypotheses for where the walls and doors
exist in the environment.

Like many methods, our place classification relies solely on laser-based features or
those extracted from occupancy grids. However, a variety of other modalities have been
employed for semantic place classification. Pronobis et al. [31] combine visual and laser
models of the environment, along with door information to label an environment. Later
work [35] introduced object information to infer more categories for large-scale semantic
mapping. Another approach [36] has a human specify the location of places, which are
then fit to Gaussian models to create a segmentation of the environment.

Finally, Rituerto et al. [37] create semantic labels for a sequence of images capture by
an omnidirectional camera. Like our approach, they recognize the importance of labeling

12

both places and transitions in the construction of a topological map. However, they treat
transitions as a different class, rather than a simple line segment boundary. As such, their
constructed map defines stairs, elevators, and doorways as types of transitions, whereas
doorways are simply gateways in our approach and stairs and elevators are different types
of paths.

2.3 Probabilistic Topological Mapping

Early work by Kuipers and Byun [16] decided among a set of possible map hypotheses by
attempting to navigate a route planned within a map hypothesis. If the robot was unable
to follow the route, the map hypothesis was discarded. Choset and Nagatani [22] use a
similar strategy to determine whether a new place was previously visited. They create a set
of possible places at which the robot could have arrived, select a path to follow, and rule out
inconsistent matches based upon the next visited place. They continue this process until a
single match remains. Dudek et al. [23] describe an exploration strategy to find the correct
topological map by maintaining a set of distinct markers. The robot leaves these markers at
places with unexplored paths. When the robot traverses a new path, it can then determine
if the place at the end was previously visited or is new. In later work, Marinakis and Dudek
[15] discuss the tradeoff an exploration strategy must make between full exploration of the
environment and keeping the number of map hypotheses tractable.

These exploration-based approaches to finding the correct map are ultimately unsatis-
factory because they depend on complete control of the robot’s actions, which robots that
serve humans (such as a robotic wheelchair) or that interact with other agents likely will
not have. They may also require a large number of traversals through the environment,
which is again impractical on a robot operating in the human environment or under tempo-
ral constraints. In this paper, we assume the robot has no control over the order in which
places in the environment are explored.

While probabilistic methods have been the focus of metric mapping since the seminal
work by Smith, Self, and Cheeseman [38], only recently have probabilistic algorithms for
topological mapping emerged. Probabilistic topological mapping algorithms incorporate
metric and appearance information to focus the search for the correct map on the most
probable hypotheses or to assert a loop closure only when the posterior is extremely peaked
around a single place.

Ranganathan and Dellaert [8] use a Rao-Blackwellized particle filter where each sam-
ple represents a topological map hypothesis. The algorithm maintains the N most probable
map hypotheses. If N is small enough, the algorithm is able to run in real-time and, based

13

on the presented results, discover the correct map. However, the particle filtering approach
inherently contains the risk of discarding or never generating the correct map. Specifically,
if an erroneous measurement causes the correct hypothesis to be removed from the sam-
ple set, the correct map can never be found because the history of map hypotheses is not
maintained.

An alternative probabilistic approach is presented by Tully et al. in [17] based on
the tree of maps described by Dudek et al. in [39]. In [17], the nodes of the tree are
annotated with a posterior probability using a recursive Bayes formulation. To avoid the
exponential growth of the tree, hypotheses with a low measurement likelihood or posterior
probability are pruned after each update. This pruning step still leaves a substantial number
of hypotheses in the tree, making real-time operation unlikely. Furthermore, pruning the
tree means no guarantee can be made that the correct map will be found. In an extension
of their work Tully et al. [9] introduce a garbage-collector hypothesis that detects when the
correct map hypothesis is likely to have been discarded, but they provide no description of
how the correct map can be recovered.

Lazy evaluation of a hypothesis tree using map likelihoods has been previously applied
in the context of robotic mapping. Hähnel et al. [40] proposed a lazy evaluation approach to
determining data associations in a feature-based metric map. Similar to our heuristic search
for loop closures, they maintain a tree of data association decisions for all time steps. Each
node is labeled with the log-likelihood of the measurements given the data association.
The node with the highest log-likelihood is considered until the maximum log-likelihood
node is a leaf in the tree. Our approach differs by using a heuristic to estimate the log-
likelihood of a node at a future time. By doing so, our tree search potentially considers
fewer hypotheses and contains a smaller set of leaf nodes.

More recent work in metric mapping has made progress towards robust metric SLAM
by incorporating a metric for the quality of a loop closure directly in the pose graph op-
timization process, rather than through search like Hähnel et al. [40]. These algorithms
address problems created by outlier constraints in the back-end optimization that result
from data association errors in metric SLAM front-end. Olson and Agarwal [2] use a
Gaussian mixture model to describe the distribution across possible loop closures while
also including a high-covariance null hypothesis to allow completely disregarding a partic-
ular solution. The switchable constraints approach from Sunderhauf et al. [4] uses a similar
strategy to weight the cost of different loop closure constraints in the graph. Dynamic co-
variance scaling introduced by Agarwal et al. [5] improves on switchable constraints by
removing the additional switching variables, and thus improving the system runtime. Pf-
ingsthorn et al. [3] create a generalization of the previous robust graph SLAM approaches

14

by introducing an additional step between the front-end and back-end of the SLAM system
the pre-filters outlier loop closure constraints.

In all of these approaches, the outlier constraints are the result of an incorrect loop
closure assertion resulting from an incorrect match between the robot’s current location and
a previous location. In the case where the robot is actually revisiting a previous location,
topological SLAM avoids incorrect loop closures through explicit enumeration of the loop
closure possibilities. However, the density of pose graphs makes an explicit search for loop
closures infeasible. However, current topological SLAM approaches will fail when a place
detection error (false positive or false negative) creates an inconsistency in the topological
map. The robust metric SLAM approaches, however, can often detect such an outlier and
ignore it, i.e. by accepting the null hypothesis [2].

2.4 Socially-Aware Navigation in Human Environments

Amongst many challenges including subtle body language cues, knowledge of cultural and
social norms, and interactions with inattentive people, the everyday world is a complex
and highly dynamic environment for a robot to navigate. Faced with such environments,
some robots are able to use simple navigation strategies like waiting for agents to move
out of the robot’s way [41]. Many robots though – especially service robots like intelligent
wheelchairs or telepresence systems – cannot rely on such strategies because efficient mo-
tion is needed and waiting for crowds to disperse before moving is not an option. A variety
of approaches are used for navigating in these dynamic environments, including treating the
world as quasi-static and replanning quickly using an algorithm like D*-Lite [42], forward-
predicting objects using a constant velocity model [43, 44], or optimizing the robot’s tra-
jectory to minimize probability of collision with moving agents [45, 46, 20, 47].

Within the broad scope of motion planning research, the improved abilities of robots to
navigate safely in highly dynamic environments has led to increasing interest in socially-

aware navigation, whereby a robot considers additional factors beyond safety and effi-
ciency in deciding how to move through the world. As noted by Kruse et al. in their review
of the field [48], most of these additional performance measures are drawn from social sci-
ence research into proxemics (measures of interpersonal distance) [49] and social norms
(accepted cultural behaviors for a variety of situations) [50]. A recent study by Zanlungo
et al.[51] provides experimental evidence for the commonly acknowledged social norm of
moving along the right (or left) of a corridor, even when not interacting with other pedes-
trians.

The importance of social awareness for improving human comfort in the proximity of

15

robots has been established by a number of studies [52, 53, 54, 55]. However, because
social norms are so loosely-specified and culture-dependent, the most successful approach
for making a robot understand and follow social norms is to learn them from observing
people’s behavior in a variety of social situations.

Techniques for learning normative behavior focus on three overlapping themes, as iden-
tified by Kruse et al. [48]: comfort, naturalness, and sociability. Comfort focuses on reduc-
ing discomfort people feel when interacting with a robot [56, 55], naturalness focuses on
low-level behaviors that make a robot seem more human-like [57, 52], and sociability fo-
cuses on robots exhibiting explicit behaviors, like waiting in line [58]. Okal and Arras
[59] attempt to generalize the concept of normative behavior for a robot by formalizing a
state representation that included additional social attributes along with low-level motion
primitives.

Methods for augmenting classical motion planning with social cues fall into three main
categories: cost maps, potential fields, and minimizing the probability of a negative inter-
action. Sisbot et al.[60] constructs cost fields around humans accounting for safety and
visibility, whereby the robot prefers to be visible to people to avoid surprise. Kruse et
al.[61] built on this work to include ContextCosts, which are direction-dependent costs that
adjust the social costs based on the strength of the robot’s interaction with a pedestrian. If
the robot detects is not interacting strongly with a person, e.g. they are crossing its path in
an intersection, the social costs are reduced to the degree that the robot follows the short-
est path route and simply slows to wait for them to pass. A later user study [57] showed
that this slowing behavior was preferable to path-changing behaviors because the robot’s
intentions were clearer.

Potential fields methods focus on the application of the Social Forces model [62] to
robot navigation and pedestrian trajectory prediction. Social forces originated as a method
for predicting human interactions and trajectories when moving through the world. The
original model was extended to include explicit collision prediction (CP-SFM) by Zan-
lungo et al.[63], which better matches observed patterns of human motion. CP-SFM was
shown by Shiomi et al.[52] to produce more predictable robot behavior, allowing for safer
interactions. Ferrer et al.[64] extend the social forces model by differentiating person-
person interactions from person-robot interactions, and then integrate their social forces
into a potential field planner for a large-scale deployment.

Chung et al. [65, 58] present the Spatial Behavior Cognition Model (SBCM) that di-
vides the navigation problem into General (GSE) and Specific Spatial Effects (SSE). GSEs
define a similar set of metrics to MPEPC, whereby costs are associated with static and dy-
namic obstacles, as well as actions. SSEs are environment-specific features that influence

16

pedestrian behaviors, learned using a histogram of pedestrian motion in the environment.
Unlike SSEs however, the responses learned by our approach generalize to any environment
with a structure that can be represented as a topological map.

Kim et al. [66] use Inverse Reinforcement Learning to learn a cost function associated
with navigation actions to navigate a smart wheelchair around dynamic obstacles. How-
ever, their approach is limited by choice of sensors and thus unable to generalize to fully
autonomous motion. Additionally, they only learn passing behaviors and default to the
shortest path to the goal otherwise. An alternate approach by Dondrup et al. [67] creates
a qualitative description of a passing interaction and learns state transition probabilities for
how the passing action should be performed. Their approach focus on passing behaviors
between a single person and robot, which limits the applicability of their method to more
complex scenarios. More complex passing behaviors are learned by Chen et al. [68] us-
ing deep reinforcement learning. They achieve impressive performance in learning norms
for passing pedestrians in a busy real-world environment, but they also focus on solely on
passing behaviors and otherwise optimize for time efficiency.

Given the inherent uncertainty in understanding the behaviors of people, probabilistic
approaches hold great appeal. Closely related to our probabilistic formulation is work by
Rios-Martinez et al. [45] who introduce social awareness in an RRT-based approach by
incorporating a probability of disruption, which occurs when the robot violates social con-
ventions associated with groups of people interacting. This additional probability fits natu-
rally within our approach, where progress is weighted against the probability of collisions.
Park et al. [69] focus on identifying a single negative interaction, humans intentionally
blocking the robot, using Gaussian Processes.

More recent work by Trautmann et al.[47] attempts to model the joint interactions
amongst all agents in the environment, as opposed to our simpler approach where agents
are treated independently when predicting their actions. They apply Gaussian Processes
to estimate both pedestrian and robot positions and select an action based on that result.
However, their approach requires full knowledge of nearby pedestrians and the robot is
limited to a slow speed of 0.3m/s, whereas our approach is more limited in prediction abil-
ity, but allows safe operation at 2.5m/s in general environments. An alternate approach,
Multi-Policy Decision Making (MPDM) [70], samples a joint space of agents and poli-
cies, forward simulates these states, accounting for agent interactions using a Social Forces
model, and selects the robot policy that minimizes a cost metric based on progress to the
goal and the social force exerted on other agents. A followup for this approach [71] focuses
on finding the worst-case outcomes to select a safe policy to execute.

17

CHAPTER 3

The Hierarchical Hybrid Spatial Semantic
Hierarchy

This chapter describes the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH), an ex-
tension of the Hybrid Spatial Semantic Hierarchy (HSSH) [11], a hybrid metric-topological
map representation that provides metrical and topological representations of small-scale
(local) and large-scale (global) space. We begin with a brief overview of the HSSH. We
then discuss an alternate interpretation for a topological map as a collection of navigation
affordances, which describes qualitative properties about how a robot can move through
the environment. We then provide an overview of the core concepts of the H2SSH and the
intuition behind the representation. Finally, we formalize the H2SSH by defining its local
and global topological representations.

3.1 The Hybrid Spatial Semantic Hierarchy

The Hybrid Spatial Semantic Hierarchy (HSSH) is a map representation that uses metric
and topological representations of small-scale space, the area within the robot’s immediate
sensory horizon, to build topological and metrical maps of the large-scale environment. The
HSSH is a hierarchy of ontologies, where each layer in the hierarchy provides a different
abstraction of space. The Local Metrical layer uses a local simultaneous localization and
mapping (SLAM) algorithm to build a Local Perceptual Map (LPM) of the small-scale
space around the robot. The Local Topological layer performs place detection within the
LPM, determining the extent and local topology of each place. The Global Topological
layer uses the places detected by the Local Topological layer to build a global topological
map of large-scale space. The Global Metric layer uses the global topology to construct a
metric map of large-scale space. The Global Metrical layer is described in detail by Beeson
et al. [11] and is not discussed further in this thesis. The flow of data within the HSSH is

18

Figure 3.1: The flow of data through the HSSH. Raw sensor data is processed by the Local Metrical
layer using a local SLAM algorithm to produce the LPM of small-scale space and the robot’s pose
within the LPM. The Local Topological layer searches for decision points in the LPM and produces
local place and local path information. The Global Topological layer uses a topological SLAM
algorithm to produce a topological map for large-scale space. The Global Metrical layer is not
shown in this figure.

shown in Figure 3.1. The following sections provide a brief summary of the layers of the
HSSH. For a more thorough discussion, see [11].

3.1.1 Local Metrical Layer

The Local Metrical layer of the HSSH represents the local surround of the robot – the
portion of the environment within the robot’s sensory horizon – using an occupancy-grid-
based representation called the Local Perceptual Map (LPM). The LPM is a fixed-size
scrolling metrical map of the environment, where the robot stays approximately centered
in the map at all times. As the robot drives through the environment, portions of the map
that fall outside the fixed boundary around the robot are discarded.

Using a small, fixed-size map ensures that no large-scale loop closures occur within the
LPM, so an explicit search for loop closures need not be performed. We assume the robot
is always well-localized within the LPM. However, the reference frame of the LPM with
respect to the large-scale environment is expected to slowly drift over time.

3.1.2 Local Topological Layer

The Local Topological layer of the HSSH creates a symbolic description of small-scale
space by detecting places in the LPM. Places in the HSSH are located at decision points

19

Figure 3.2: Example LPMs constructed during navigation of an office building.

in the world, which are locations where the robot is presented with qualitatively distinct
options about the next action to take. For an indoor environment, a decision point is typi-
cally located at a hallway intersection. Each place is described by a metric map of the place
neighborhood and by its local topology, or small-scale star.

A place neighborhood is a metric map of the portion of the LPM within the boundary
of the place, as defined by static obstacles and gateways.

A gateway represents the boundary between a place neighborhood and the rest of the
environment [11]. A gateway’s endpoints are located on static obstacles. The gateway
provides two headings, inbound and outbound, that define a reference heading for control
laws that guide the robot into or out of the place neighborhood associated with the particular
gateway.

The local topology of a place is determined using the set of paths incident to the place.
Unlike other topological map representations, a path is not an edge between two places,
but is rather a larger ordered sequence of places that either terminates or passes through
a place. Each incident path is represented by two local path fragments, which represent
the portion of the larger path contained within the LPM. A local path fragment describes
the direction of travel along the associated path when departing from the place, as well as
whether or not the local path fragment can be navigated. If a path terminates at a place, one
of the two associated local path fragments will be marked as unnavigable.

The small-scale star is a symbolic representation of the local topology of a place and
is a circularly ordered list of the directed local path fragments for the paths incident to the
place. For example, a T-intersection consists of two paths, three navigable path fragments,
and one unnavigable fragment. Figure 3.3 shows the local topological representation of a
T-intersection.

The formal description of the Local Topological representation is contained in Ta-
ble 3.1.

20

(a)

spc:

[〈π−a , 1〉,

〈π+
b , 1〉,

〈π+
a , 1〉,

〈π−b , 0〉]
(b)

Figure 3.3: A place neighborhood within the Local Topological layer of the HSSH in shown in
(a). The extent of a place is the portion of free space within the gateway boundaries. The dashed
arrow associated with each gateway shows the outbound heading, which is the normal of the gate-
way boundary. π−a , π

+
a , π

+
b are directed local path fragments. Each directed local path fragment

describes the portion of a local path visible from the place neighborhood along with the direction
of motion along the local path. π−a and π+

a are part of the same local path, as indicated by the
shared subscript a. π−b is an unnavigable local path fragment and is not shown in the figure. The
corresponding small-scale star is shown in (b). Each directed local path fragment is associated with
a {0, 1} to indicate whether or not it is navigable.

gateway:
boundary: pair of endpoints in the LPM

heading: heading of gateway normal in the LPM pointing
away from the place

place:
map: local metric map

gateways: set of all gateways bounding the area
small-scale star: cyclic order of local path fragments (counter-

clockwise)
path segment:

g−: gateway leading in the minus direction
g+: gateway leading in the plus direction

Table 3.1: The Local Topological representation of the HSSH. The local metric map associated with
a place is the portion of the LPM contained within the place boundary defined by static obstacles
and gateways.

21

(a)

(b)

Figure 3.4: A path in the HSSH is a one-dimensional sequence of places and the path segments
between them. In (a), we see two places, pa and pd, as represented in the Local Topological layer
(see Figure 3.3). pa and pd are associated with directed path fragments ({π−b , π

+
b } and {π−e , π+

e })
that describe the direction of motion along some larger path. In the corresponding Global Topo-
logical representation of this same portion of the environment in (b), each of the places and paths
is associated now with a global place or path, which is indicated by the change in subscript from
letters to numbers. The directed local path fragments {π−a , π+

a } and {π−e , π+
e } become associated

with the same global path Π1, while the other path fragments are part of unique paths Π2 and Π3.

3.1.3 Global Topological Layer

The Global Topological layer represents large-scale space using a global topological map, a
structure consisting of places, paths, and path segments. The places and paths in the global
topological map are detected in the Local Topological layer.

A place in the global topological map is represented by a large-scale star, which is the
global analogue of the small-scale star. A large-scale star is a circularly ordered sequence
of directed global paths. A bijective mapping exists between a large-scale star and its
corresponding small-scale star. Each directed local path fragment in the small-scale star
corresponds to a directed global path in the large-scale star. Note that directed local path
fragments from different places may correspond to the same directed global path. For
example, using the example in Figure 3.4, we see that both π+

e and π+
b are mapped to Π+

1 .
A path is a linearly ordered sequence of path segments. Each path segment connects

two places in the map and contains an estimate of the displacement, λ = (∆x,∆y,∆θ,Σ),
between the reference frames of these two places. Figure 3.4 shows an example of the
representation of a path in the Global Topological layer, along with its relation with the
Local Topological layer.

22

path segment:
p−: place at the upstream end of the path segment
p+: place at the downstream end of the path seg-

ment
λ: 〈δx, δy, δθ,Σ〉

path: path to which the path segment belongs
path:

places: ordered sequence of places
segments: ordered sequence of path segments

place:
large-scale star: circularly ordered set of adjacent path segments

(counter-clockwise)

Table 3.2: The Global Topological representation of the HSSH.

3.2 H2SSH Overview

For a robot to successfully travel through an environment, the robot needs to have a repre-
sentation of every relevant part of the environment that it encounters. For a metric map, like
an occupancy grid, the representation simply encodes whether a portion of the environment
is occupied or free. Thus, the robot only knows whether something can be traversed.

A topological map represents the environment symbolically as a graph-like structure of
nodes and edges. The topological map representation requires the robot to create symbolic
abstraction of each relevant part of its environment. This abstraction defines the robot’s
understanding of the navigation semantics of its environment. To create the abstraction of
the environment necessary for building a topological map, we define an ontology of space
using the concepts of areas and navigation affordances.

Affordances were originally defined by Gibson [72]. We describe them as the oppor-
tunities for action between an agent and its environment. Thus, affordances depend on
the agent’s abilities as well as the environment’s properties. For mobile robots, we define
the navigation affordances in the environment as those affordances related to the robot’s
motion within the environment.

One affordance previously studied by Uğur et al. [73] is traversibility, which speci-
fies whether or not a robot can reach and pass through some pose in the environment. If
the robot is in collision with an object, then a particular pose is not traversable. Thus,
traversibility defines where a robot can be in an environment. Though simple, the idea of
the traversibility of an environment is implicitly used by all motion planning algorithms
that calculate collision-free trajectories for a robot.

Following the work of Tsai et al. [74], we extend the concept of navigation affordances

23

beyond traversibility by examining how the shape of the environment provides informa-
tion on how to move through the environment. We identify two affordances sufficient for
describing how a mobile robot can move through the environment.

First, we note that a mobile robot spends much of its time traversing hallways, foot-
paths, sidewalks, and roads. All of these structures have an elongated shape with a dom-
inant axis along which motion takes place. This axis informs the robot where a hallway
leads and how to navigate there, even if the end of the hallway is out-of-sight. We say that
when moving along a hallway or similar structure, the robot travels along the dominant
axis. In other words, the hallway provides the affordance of traveling along its axis.

Second, most human-built environments are structured. Indoor environments most of-
ten consist of rooms, corridors, stairs, elevators, and large open halls. Outdoor environ-
ments consist of sidewalks and plazas or road networks. In each case, the environment
consists of a set of distinct entities, like individual offices, corridors, or roads. A route
through these environments, therefore, requires moving through a sequence of these enti-
ties. The boundary between adjacent entities thereby provides the ability to transition from
one entity to the next.

Viewing the environment from the perspective of navigation affordances allows a topo-
logical map to be interpreted as a map describing the opportunities for moving provided by
the environment. In the H2SSH, we define an ontology of space to represent the world using
travel and transition affordances. The ontology used in the H2SSH is shown in Figure 3.5
and is described in Section 3.4.

Using this interpretation, the H2SSH representation divides the environment into non-
overlapping spaces, which we call areas. An area is the basic entity in the environment.
Each area is bounded by static obstacles, like walls and drop-offs, and by gateways [11],
which define the transition affordances between adjacent areas. Our ontology of space
defines three types of areas, path segments, decision points, and destinations, that each
serve a functionally different purpose for a mobile robot.

A path segment is an area that provides a travel affordance between places. We dis-
tinguish between the places at the ends of the path segment from the places along either
side of the path segment. A path segment can be unambiguously mapped by the robot,
and except in rare or pathological situations, like a circular building, the robot enters the
path segment from one place and exits the path segment at another. While traveling along
the path segment, the robot may observe places, corresponding to offices and other rooms,
which we call destinations. These destinations are added to the path segment’s topological
description. Note that decisions are not only made at decision points. In the H2SSH, they
are also made when traveling along a path segment, as the robot must decide whether or

24

�
���

���

HHHH
HHj

��
�����

HH
HHHHj

A

Ψ P

P∆ PD

Area

Path Segment Place

Decision Point Destination

Figure 3.5: The ontology of space used to represent the world in the H2SSH. A path segment (Ψ)
has a major axis of travel, providing the option to travel forward or backward along this axis. The
path segment may also have destinations on the right and left sides. A decision point (P∆) is at the
end of two or more unaligned path segments and affords the robot a choice of which path segment
to follow. The decision point may also have one or more destinations adjacent to it. Finally, a
destination (PD) is an area to which the robot can travel that doesn’t meet the criteria for a path
segment or decision point. Destinations are often (but not always) areas that are only accessible
from a single other area, like offices and conference rooms.

not to enter one of the destinations along the sides of the path segment.
A decision point is an area located at the end of two or more unaligned path segments.

Decision points correspond to the places used in most topological map representations.
Like path segments, a decision point can be adjacent to one or more destinations.

A destination is an area that doesn’t meet either of the above criteria for path segments
or decision points. Destinations correspond to locations like offices and conference rooms
that are often at the start or end of a route through the environment, but are typically not
otherwise visited during travel through the environment. In the hierarchical map (Sec-
tion 3.5.2), destinations can also represent large-scale spaces that correspond to individual
floors in a building or the whole building itself.

Our representation differs from existing topological and semantic map representations
by distinguishing between the types of places in the environment based on the navigation
affordances available to the agent. A decision point serves a functionally different role
in navigation than a destination. In general, destinations are the goal locations where the
robot wishes to travel and the decision points are the places where turns will be made while
following a route to a destination.

The H2SSH creates a topological abstraction for both small-scale and large-scale space,
corresponding to the Local Topological and Global Topological layers. The Local Topo-
logical level segments the Local Perceptual Map into distinct area and determines when the

25

robot has transitioned to a new area. The Global Topological level establishes the global
connectivity of paths and places and the overall structure of the environment. In the fol-
lowing sections, we formalize the topological representations in the H2SSH.

3.3 H2SSH Local Metrical Layer

Constructing a topological map requires first detecting the places in the map, a process
typically called place detection. Place detection occurs within small-scale space, which
is defined in the H2SSH as the union of three regions: the portion of the environment
contained within the robot’s current area, the portion of the environment within all areas
adjacent to the current area, and the portion of the environment within the robot’s sensory
horizon. In the H2SSH and HSSH, we represent small-scale metrical space using a Local
Perceptual Map (LPM).

The LPM is a high-precision occupancy grid of the local surround that scrolls as the
robot moves through the environment. In the HSSH, the LPM is a fixed-size region centered
around the robot. In the H2SSH, the LPM varies in size depending on the configuration of
the areas in the environment. This change means areas larger than the previous fixed-size
LPM can be created within the H2SSH. With our new definition, as the robot moves, the
LPM will stretch to contain newly visible portions of the environment. When a new area is
entered, the LPM boundary will shift to remove any areas no longer adjacent to the current
area.

3.4 H2SSH Local Topological Layer

The Local Topological layer of the H2SSH provides a symbolic description of the LPM as
a set of discrete, non-overlapping areas, which we call the local topological map.

A gateway is a line segment, whose endpoints are static obstacles, that separates two
areas. Each area in the LPM is bounded by static obstacles, like walls, and gateways. The
heading of a gateway is the normal to the gateway boundary that points away from the area.
The heading is used for determining if gateways are aligned for constructing the transition
cycle defined below. Additionally, the heading can be used to select a target pose when
planning a route to leave an area.

A transition describes the topological action that carries the robot from one area to an
adjacent area. In small-scale space, transitioning between areas corresponds to crossing
a gateway separating the areas. A transition 〈g, aa, ab〉 is represented by its associated
gateway g and the areas it bounds aa and ab.

26

A path segment is an area that provides a travel affordance between places. A path
segment is adjacent to a place at each end, (p−, p+). Along each side of a path segment are
zero or more adjacent destinations. The destinations on the left and right side, where left
and right are determined when facing towards p+ from p−, are represented by a transition

sequence.
A transition sequence τ is a linear order of the transitions available along the side of

a path segment. τ is a sequence of tuples 〈rn, d−, l, σd−〉, where rnn is the transition, d−

is the distance along the path segment starting from p−, l is the length of the transition’s
gateway boundary, and σ2

d− is the uncertainty of d−.
A value, λ−+ = 〈δx, δy, δθ,Σ〉, stores the transform from the reference frame of p+ to

the reference frame of p−. Using the composition operator ⊕ from Self et al. [38], a pose
x+ in the p+ reference frame can be described in the reference frame of p− with (3.1):

x− = λ−+ ⊕ x+ =

x
+cos(δθ−+)− y+sin(δθ−+) + δx−+

x+sin(δθ−+) + y+cos(δθ−+) + δy−+

θ+ + δθ−+

 (3.1)

While not strictly necessary, this metric distance and length information allows for
transitions in the sequence to be found even when previous transitions in the sequence
are not detected, i.e. a door has closed, or additional transitions are detected, i.e. a door
has opened. Given a perfect transition detector, this information wouldn’t be necessary.
However, such a detector does not exist, so the metric information improves the robustness
of the map representation.

Whereas a path segment is represented by a linearly ordered sequence of places, a place

is represented by a circularly ordered sequence of areas, which we call a transition cycle.
There are two types of places in the H2SSH, decision points and destinations, which are
defined based upon the type of their adjacent areas. A decision point is located at the ends
of two or more unaligned path segments. Decision points typically occur at intersections,
or in large plazas, atria, or lobbies. A destination is a place that does not meet the criterion
for being a decision point. A destination can be adjacent to zero or one path segment ends
and zero or more places (decision points or other destinations). Only destinations can exist
along the sides of a path segment.

A transition cycle c is a circularly-ordered set of the transitions available at a place.
The transitions in a cycle are organized into pairs of aligned transitions that divide the
cycle into two equal-sized sets. Thus, the cycle should always contains an even number
of transitions. Since not every place contains an even number of transitions and not every
transition is naturally aligned with another (see Figure 3.7), we pair each such transition

27

gateway:
boundary: pair of endpoints in the LPM

heading: orientation of boundary normal pointing away from area
transition:

gateway: gateway grounding transition in the LPM
areas: areas bounded by the transition

area:
id: unique identifier

map: local metric map
place,

decision point,
destination:

cycle: cyclic order of transitions to adjacent areas
path segment:

p−: place at minus end
p+: place at plus end
λ−+: 〈δx, δy, δθ,Σ〉
left: linearly ordered sequence of destinations

right: linearly ordered sequence of destinations

Table 3.3: The Local Topological representation in the H2SSH (compare with Table 3.1 on page 21).
Transitions are the boundaries between adjacent areas, grounded in the metrical map by a gateway.
All areas have a local metric map representation, along with a set of transitions leading to adjacent
areas. Places – destinations and decision points – are represented symbolically as a cyclic order of
transitions to adjacent areas. Path segments are terminated by places (p−, p+), and contain a linear
sequence of destinations along each side. The λ−+ defines the change in the local reference frame
from p+ to p−.

28

ψ1:

p−: p∆
a

p+: p∆
f

λ−+: λfa

left: [pDb , p
D
c , p

D
d , p

D
e]

right: [pDg]

Figure 3.6: An example of how a path segment is represented in the H2SSH. Note that pDh is adjacent
to p∆

a , not ψ1. For brevity, we use only the area a transition leads to when describing the transition
sequences along the sides of ψ1.

29

with a null transition, r∅, which is a non-navigable transition that leads nowhere and serves
as a placeholder in the cyclic order to allow a purely qualitative description of left and right,
as discussed below.

Given a transition cycle, c = [r1, r2, ..., rN], we can describe the available actions using
three functions:

next(rn, c): the next transition to rn in counter-clockwise order.
prev(rn, c): the previous transition to rn in counter-clockwise order

aligned(rn, c): the transition aligned to rn

Each function takes as an argument a transition, rn. When entering an area via rn,
the transitions to the right are defined as those from rn to aligned(rn, c) in the counter-
clockwise order of c, and those to the left are those from aligned(rn, c) to rn in the same
counter-clockwise order.

Using these functions, we can easily define three qualitative types of actions. A straight
action corresponds to transitioning from some rn to aligned(rn, c), the available left turns
consist of all transitions in the sequence beginning with left0 = prev(rn, c) and ending
when aligned(rn, c) = prev(leftm, c), and the available right turns are analogously the se-
quence of transitions beginning with right0 = next(rn, c) and ending when aligned(rn, c) =

next(rightm, c).

3.4.1 Local Topological Location

We call the robot’s state in the local topological map its local location lk. The subscript k
indicates the location with respect to the discrete events that define the robot’s topological
motion through the environment. Thus, lk is its location after topological event k has
occurred.

In the H2SSH, the robot is always located at a place or on a path segment. When at a
place pk, the robot state is the tuple lk = 〈pk, rentry〉, where rentry is the transition through
which the place was entered.

When on a path segment, the robot state is the tuple lk = 〈ψk, rentry, dir〉, where ψk
is the current path segment, rentry is the transition through which the path segment was
entered, and dir is the direction the robot is traveling along the path. The direction along
the path takes one of three values:

dir = ∅ occurs when a robot enters a path segment from a destination in its left or
right transition sequence. In this case, the robot does not have a defined direction. Once the
robot begins moving towards an endpoint, then the direction will change to dir ∈ {+,−}.

30

(a) (b)

cp∆
1

:

r1: 〈g1, ψa, r3〉

r2: 〈g2, p
D
b , r4〉

r3: 〈g3, ψc, r1〉

r4: 〈g4, ψd, r2〉
(c)

cp∆
2

:

r1: 〈g1, ψa, r3〉

r2: 〈g2, ψb, r4〉

r3: 〈g3, ψc, r1〉

r4: 〈∅,∅, r2〉
(d)

Figure 3.7: This figure shows two common decision points encountered in an office environment
and their associated transition cycles. Each transition shows the associated gateway, the area it leads
to, and the transition it is aligned with in the transition cycle. (a) shows a complex decision point
with a transition cycle cp∆

1
. In (c), we see that the slightly offset transitions leading to path segments

ψa and ψc are determined to be aligned. As a result of being aligned transition, ψa and ψc will
be part of the same global path when the global topological map is constructed. Additionally, the
transitions leading to ψd and pDb are also aligned, even though they lead to different types of areas.
Allowing different types of transitions to be aligned ensures that a qualitative description of left
and right always exists, regardless of how a place is entered. (b) shows a T-intersection without an
adjacent destination. As a result, we see in (d) that cp∆

2
contains a null transition, r4, aligned with

r2. The null transition allows our definition of left and right to hold regardless of the configuration
of transitions in a place.

31

Possible Path Directions
+ the robot is moving towards p+

− the robot is moving towards p−

∅ the robot has not selected a direction yet

The entry transition rentry is determined based on the robot’s motion through the envi-
ronment. However, at the robot’s initial location l0, the robot has yet to move. Therefore,
rentry = ∅ for l0.

3.5 H2SSH Global Topological Layer

The Local Topological layer of the H2SSH defines the robot’s motion through areas within
the local environment defined by the LPM. The robot’s knowledge of the areas in the LPM
is temporary. As the robot travels through the environment, areas will shift outside the
bounds of the LPM and be forgotten. Consequently, when the robot revisits an area that
had fallen out of the LPM, a new area will be detected in the Local Topological layer.

The goal of the Global Topological layer of the H2SSH is to create and maintain a
globally consistent topological map of the areas in the environment. When the robot visits
an area, the Global Topological layer is responsible for finding possible matches between
the new area and a previously visited area, and for adding new areas to the map. The details
of this mapping process are described in Chapter 6. The remainder of this section describes
the map representations constructed by the Global Topological layer.

The Global Topological representation has two responsibilities. First, it establishes a
1-1 correspondence between local areas detected by the Local Topological layer and global
areas in the global topological map. Second, it identifies topological regions in the envi-
ronment, which are parts of the environment, like buildings along a sidewalk, that appear
as single destinations along a path segment, but are themselves large-scale structures. An
extensive example of topological regions is presented in Section 3.5.4.

3.5.1 From Local Areas to Global Areas

At the Local Topological level, the local environment consists of one or more areas bounded
by gateways. Each gateway provides the means by which the robot can transition between
adjacent areas, and each area is described by the configuration of its transitions, i.e. path
segments have transitions at each end and along their sides, while places have a circular
ordering of transitions.

32

When moving from the Local Topological to Global Topological representation, the
concept of a transition as affording motion between adjacent areas is unchanged. Whereas
a local transition r is associated with a particular gateway, a global transition R simply
defines an adjacency relation between two areas.1 The type of each area (ψ, pD, p∆) as-
sociated with a local transition r is the same as the type of each area associated with the
corresponding global transition R. Additionally, a unique identifier is associated with each
global transition to account for areas with multiple transitions between them. Thus, a local
transition r1 = 〈3, g3, ab〉, where 3 is the locally unique id for the transition, g3 is a gateway,
and ab the local areas, becomesR1 = 〈1, A1, A2〉, where 1 is the assigned id and A1 and A2

are global areas in the topological map, with type(aa) = type(A1)∧ type(ab) = type(A2).
Given the relation between a local and global transition, there exists a bijective mapping

between a global transition cycle C and its corresponding local transition cycle c. The
cyclic order of local transitions in the local transition cycle is identical to the cyclic order
of global transitions in the global transition cycle. That is, for each local transition in c,
rn = 〈gn, aa, ab〉, there exists a global transition Rn = 〈n,Ai, Aj〉, where type(aa) =

type(Ai) ∧ type(ab) = type(Aj).
As with a transition cycle, there exists a bijective mapping between a global transition

sequence T and its corresponding local transition sequence τ . For each transition to a local
destination in τ , there is a transition to a global destination in T .

Using the global transition cycle and global transition sequence, we can define global
path segments, global destinations, and global decision points similarly to their Local Topo-
logical analogues:

• An area is a non-overlapping, unique portion of the environment. Each area is de-
scribed by a local metric map and is associated with a parent region, which will be
explained in Section 3.5.2.

• A path segment is an area that affords travel between places adjacent to each end.
Along the left and right sides of a path segment are zero or more adjacent destina-
tions. The destinations on the left and right sides are each represented by a global
transition sequence.

• A decision point is adjacent to the end of two or more unaligned path segments and
is represented by a global transition cycle.

• A destination is any place that does not meet the criterion for being a decision point
and is represented by a global transition cycle.

1Our convention is to use lower-case letters for all local topological symbols and upper-case letters for all
global topological symbols.

33

In addition to the global versions of local areas, the Global Topological layer also con-
tains paths. A path is a linearly ordered sequence of path segments and places. The places
in the path are the endpoints of the path segments. Adjacent path segments in a path have
aligned transitions at the place they share as an endpoint.

3.5.2 Hierarchical Regions

A robot’s location in the environment can be described at many levels of abstraction. For
example, a robot that operates on a university campus may describe the environment in
multiple ways. At the lowest level is the robot’s pose (x, y, θ) in its local environment,
which could be location of its charging station. The next level would be the lab (a desti-
nation) where its charging station is located. The robot’s lab can then be on a floor of a
larger building, which itself is one building on the university campus. The H2SSH supports
these different types of locations by representing the global environment as a hierarchy of
regions.

A region is a structure in large-scale space represented by a global topological map.
Each region contains zero or more child regions and can be a child of another region. The
parent-child relationships between regions form a containment hierarchy, whereby a region
can be wholly contained within one region and can wholly contain other regions. Within a
region, each child region is a destination within the global topological map for that region.

Motion into and out of a region occurs via its exits. Each exit is a global transition that
carries the robot from an area within the region to an area within one of its parent regions
or an adjacent region at the same level of the hierarchy. Exits can be shared by multiple
regions in the hierarchy. For example, a door leading out of a building is an exit for the
region representing the specific floor of the building and is also an exit for the building’s
region.

Three important cases exist for the region hierarchy. First, the root of the hierarchy is
the only region with no parent. If a new region is created at the same level of the hierarchy,
e.g, the robot moves from one building to another via a shared hallway, then a new root
region is created that becomes the parent of the previous root and the newly created region.

Second, at the bottom of the hierarchy are regions with no children. A childless region
corresponds to a global topological map that contains no destinations that are associated
with a child region.

Finally, not every destination in the environment is associated with a region. Many
destinations, like offices or conference rooms, are represented by a local metrical map, like
the other types of global areas. Furthermore, these non-hierarchical destinations can exist

34

transition:
id: globally unique identifier

areas: adjacent areas
region:

parent: containing region
children: contained regions

topological: global topological map
exits: transitions out of the region

area:
id: globally unique identifier

parent: containing region
map: local metric map

destination:
region: contained region
cycle: global transition cycle of adjacent areas

origin: pose of place origin in global metrical map
path segment:

p−: ending place (upstream w.r.t order along the path)
p+: ending place (downstream w.r.t order along the path)
λ: 〈δx, δy, δθ,Σ〉

left: transition sequence of destinations
right: transition sequence of destinations
path: parent path

path:
places: ordered sequence of places

segments: ordered sequence of path segments
decision point:

cycle: global transition cycle of adjacent areas
origin: pose of place origin in global metrical map

Table 3.4: The Global Topological representation in the H2SSH (compare with Table 3.2 on
page 23). The map associated with a destination is now a global topological map, which allows
for creating a recursive structure of global topological maps. The segments of a path are interleaved
with the places, adjacent places have a path segment running between them. A fully-explored path
will have places at each end, while a partially-explored path will have a place at zero or one ends.

35

in the global topological map of any region in the hierarchy. Therefore, a region with a
hierarchical destination associated with a child region does not require all destinations to
also have child regions.

3.5.3 Global Topological Location

Similar to the Local Topological location, we call the robot’s state in the Global Topological
layer its global location Lk, where the subscript k indicates the location after topological
event k has occurred.

As with a local topological map, in a global topological map, the robot is always at a
place or on a path segment. When at a place, the robot state is the tuple 〈Pi, Rentry〉, where
Pi is the current place and Rentry is the transition through which the place was entered.
When on a path segment, the robot state is the tuple 〈Ψi, Rentry, dir〉, where Ψi is the
current path segment, Rentry is the transition through which the path segment was entered,
and dir is the direction of motion along the path, as defined in Section 3.4.1.

When the robot enters a path segment from a destination in one of its transition se-
quences, dir = ∅ as in the Local Topological layer. The direction of motion in the global
topological map will change to dir ∈ {+,−} once the direction of motion in the local
topological map is determined.

In addition to its location within a single global topological map, the hierarchical struc-
ture of the Global Topological layer requires the robot to always be located in one or more
regions. Using a superscript to indicate a particular region, we can then define the robot’s
global location as the sequence containing its location within each region’s global topolog-
ical map, Lk = (L0

k, L
1
k, . . . , L

ρ
k).

3.5.4 Global Topological Example

To illustrate the representation of the region hierarchy, we use an example illustrating the
representation of North Campus at the University of Michigan. Figure 3.8 shows the topo-
logical map for three levels of the region hierarchy. Figure 3.9 shows the containment
hierarchy formed by the regions.

Figure 3.8a shows the largest region, which encompasses all of North Campus. In this
region, path segments correspond to the sidewalk networks that lead from one building to
another, and the decision points are sidewalk intersections. Each destination in this map is
a building accessible from the sidewalks, and therefore contains a new region. For brevity,
we show only the region maps associated with the Beyster building and a single floor of
the Beyster building.

36

(a)

(b) (c)

Figure 3.8: This example shows topological maps of three different regions on North Campus. For
each map, solid lines correspond to path segments, blue circles to decision points, and red rectangles
to destinations. The dashed lines indicate transitions leading to destinations or different regions in
the hierarchy. (a) is the global topological map for all of North Campus. Each of the labeled
buildings is a destination within this map. (b) is the global topological map of the Beyster building
(BBB). The map contains a single path segment representing an elevator connecting four floors,
each of which is a destination. (c) is the global topological map of the third-floor of BBB.

37

We reiterate that even though in the North Campus map each destination is a region,
this property is not required by the H2SSH representation. A single region can contain
both destinations that are themselves regions and destinations that correspond to a single
destination in the local topological map.

Moving down the hierarchy, Figure 3.8b shows the global topological map of the
Beyster building. This topological map is typical of regions associated with buildings.
In particular, the building is represented as a single path segment, corresponding to an ele-
vator, with each floor accessible from this elevator being a destination containing a global
topological map.

Though for simplicity this example only shows a single elevator, multiple elevators can
exist between the floors of a building. In the case of multiple elevators between floors,
each elevator will be a path segment in the map. These path segments will be adjacent
to the destination representing the particular floor in the building. Moving between the
elevators will require planning in the topological map of a floor of the building. Similarly, if
ramps or staircases allow travel between floors, they will appear as individual path segments
connecting the floors. In general, the global topological map of a building will contain
only the path segments that lead from one floor to another, with each floor being its own
destination.

The bottom of the hierarchy is shown in Figure 3.8c. This topological map corresponds
to a single floor of the Beyster building. In this map, the path segments are hallways and
the decision points are hallway intersections. Destinations at the end of path segments
correspond to dead ends in the map. Many destinations exist on this floor of the map, one
for each office, conference room, and restroom, but they are left out of the figure. We
show a few important locations in the environment, namely a faculty member’s office, a
laboratory, and the elevator used for exiting the region.

3.6 Discussion

The H2SSH representation adds destinations and regions to the previous HSSH representa-
tion. The differences between the two representations have important consequences of the
scalability of the topological SLAM algorithm. In particular, the complexity of the topo-
logical mapping problem often grows exponentially with the number of places visited, so
limits on the number of places improves the overall scalability of the representation.

To illustrate the benefits of the H2SSH representation, we use a common scenario that a
mobile robot can expect to encounter during daily use, navigation along an office corridor.
We show how the hierarchical structure in the H2SSH representation – namely destina-

38

Figure 3.9: The region hierarchy for North Campus in H2SSH. An arrow pointing from one circle
to another indicates the region at the tail of the arrow contains the region at the head. Thus, North
Campus contains every building, and BBB contains every floor of BBB. All other buildings contain
multiple floors, but they are omitted from this figure for clarity.

tions along path segments – can be exploited to allow for more scalable mapping of large
environments.

Consider a typical map of part of an office building, as shown in Figure 3.10a. The
map consists of interconnected hallways, each of which is lined with offices. At the ends
of each hallway is an intersection with another hallway.

We contrast how a robot would represent this situation using the HSSH versus the
H2SSH.

In the HSSH, the environment consists of places and paths, and travel through the envi-
ronment is always an alternating sequence of places and paths. In this office environment,
the intersection at the end of each hallway is a place, and each of the offices is a place.
Additionally, because each place must be connected to adjacent places via a path, the space
in front of each office will be an intersection connected by a zero-length path to the office.

In the H2SSH, the environment consists of path segments, decision points, and destina-
tions. Travel through the environment consists of moving between adjacent areas. In this
office environment, the intersection at the end of each hallway is a decision point, and each
of the offices is a destination along a path segment.

In the HSSH and other topological maps, each office creates a new place in front of
the office along the hallway, which creates a new place for possible loop closures. De-

39

(a) (b)

(c)

Figure 3.10: A comparison of the topological maps of an environment in the HSSH and H2SSH. (a)
shows an occupancy grid of a portion of a typical office building built by a robot navigating through
the hallways of the building. (b) is the HSSH-style topological map of the building. The lines are
paths and the squares are places. Notice how each office generates two places in the topological
map, one place representing the office itself and a second place located in the hallway adjacent to
the office. In comparison, (c) is the H2SSH-style topological map of the building. The lines are
path segments, the squares are decision points, and the diamonds are destinations. Notice how each
office creates a single destination in the map connected to the adjacent hallway. The HSSH map
requires 11 more places than the H2SSH map to represent the same environment, each of which
create potential loop closures as the robot explores the larger environment.

40

pending on the density of offices, a robot may have difficulty mapping even a simple office
environment in real-time, and mapping larger environments may be completely intractable.

In contrast, the H2SSH distinguishes between types of places. As the robot drives along
a hallway, it identifies destinations and records their location along the current path segment
– no loop closure hypotheses are created. As a result, all offices along the hallways in the
building can be represented without increasing the number of possible map hypotheses.

41

CHAPTER 4

Place Detection and Labeling Using Affordances

This chapter describes a probabilistic algorithm for detecting and labeling places and paths
in an environment. We use the symbolic representation of space in the Local Topologi-
cal layer of the H2SSH that partitions the environment into discrete areas. To create this
partitioning, we first locate the potential transitions in an environment by finding a set of
gateway hypotheses, which then define an initial set of area hypotheses. Given these poten-
tial gateways and areas, we learn a probabilistic model and use constraints defined by the
H2SSH representation to find a set of gateways and areas consistent with the H2SSH. Using
these labeled areas, we then transform the robot’s trajectory through the environment into
a sequence of topological events describing the sequence of areas visited by the robot. Our
algorithm can be used for incremental place detection in small-scale space and can also
be used to scalably partition large-scale maps, allowing it to be used for both topological
SLAM and extracting a topological map directly from a global metrical map.

4.1 Place Detection for Topological Mapping

A topological map is appealing due to the simplicity of route-finding within the map and its
correspondence with the human cognitive map. However, topological mapping is difficult
because it requires the robot to create a higher-level abstraction of the environment when
compared to a metrical map. In particular, topological navigation requires the robot to
reliably detect a sparse sequence of places and paths as it travels through the environment.

As described in Chapter 3, the H2SSH defines the topological map in terms of two nav-
igation affordances. A transition affordance defines how the robot can change its topolog-
ical location by crossing a gateway boundary between adjacent areas. A travel affordance
defines how a robot can move along a path to reach the place at the other end, even when
that place is currently outside the robot’s sensory horizon. Given this affordance-based
representation, place detection for the H2SSH consists of finding the transition affordances

42

(represented by gateways) in the environment, which define the boundaries between areas,
and assigning a label – path segment, decision point, or destination – to each area.

Potential gateways in the environment are found by identifying change regions and
then associating a gateway with each region. These change regions are found using a
classifier trained with hand-labeled gateways. Unlike the HSSH though, we do not assume
that all detected gateways are meaningful boundaries in the local environment, but instead
acknowledge that many of the gateway hypotheses may be false positives. Finding the true
positive gateways is left to the area labeling algorithm.

The area labeling algorithm uses the gateway hypotheses to partition the environment
into an initial set of area hypotheses. Together, these area and gateway hypotheses define a
dynamic constraint satisfaction problem (CSP) that specifies the combinations of gateway
and area labels that are consistent with the H2SSH representation. The size of state space
defined by the dynamic CSP grows exponentially with the number of gateway hypothe-
ses, so exact inference is computationally expensive. Instead, we combine loopy belief
propagation with a Markov chain Monte Carlo (MCMC) algorithm to perform variational
inference in this state space. Our algorithm identifies inconsistent regions in the current as-
signment of labels to areas and samples transformations to find high-probability consistent
solutions. This sampling process is repeated until a consistent labeling of the entire map is
found. The probabilistic model that is sampled incorporates the change region probabili-
ties for gateways, an area hypothesis probability learned from training data, and a boundary
relation probability also learned from training data.

The solution found by the MCMC algorithm is a set of labeled areas and boundaries
for a single map. During topological mapping in the H2SSH, the labeled areas change
incrementally as the LPM expands and contracts to contain the visible portion of the envi-
ronment. When labeling these incremental maps, we initialize the areas in the environment
using the solution from the previous map to help ensure consistency between two iterations
of the sampling algorithm.

Finally, the goal of the place detection algorithm is the abstraction of the robot’s contin-
uous trajectory into a sequence of topological events. These events correspond to changes
in the topological state of the robot: entering or exiting areas, or turning around on a path.
The metric trajectory of the robot is overlaid on the labeled areas and boundaries to detect
when these transitions occur.

In this chapter, Section 4.2 describes the algorithm used to locate the set of possible
gateways. Section 4.3 defines our probabilistic model of the labeling problem. Section 4.4
describes the MCMC algorithm used to find a solution to labeling problem. We then de-
scribe how to adapt the MCMC approach to support incremental place detection within

43

(a) (b)

(c) (d)

Figure 4.1: An illustration of the algorithm for finding gateways. (a) shows an example of an isovist
calculated within the map. (b) shows the eccentricity isovist field for the Voronoi skeleton. (c)
shows the initial set of gateways before intersecting gateways are removed. The line segments in
(d) are the final set of gateways found in the map.

an LPM in Section 4.5. Finally, we describe how topological events are detected in Sec-
tion 4.6.

4.2 Locating Potential Gateways

When dividing the environment into distinct areas, we first find potential gateways, or
boundaries, between areas. In determining the initial set of gateways, we make the sim-
plistic assumption that the robot’s view of the environment within a single area is likely
to be uniform. Thus, boundaries will exist where the change in the visible portion of the
environment is greatest.

To quantify the robot’s view of an environment, we use the concept of isovists [75].
An isovist is a polygon that represents the portion of the environment visible from a single
(x, y) position and is analogous to a 360°scan from a laser rangefinder. Various properties
of the isovist, such as the minimum distance to an obstacle or its eccentricity, allow the
isovist to be abstracted into a scalar value. Finding the isovists throughout an environment
allows for the construction of an isovist field F , which associates one or more scalar values
with each isovist position in the environment.

44

Using the isovist field, we can partition an environment into regions by placing bound-
aries between areas where significant changes in the isovist field occur. In other words,
the boundaries between areas occur where the change in the view of the environment is
greatest.

Algorithm 4.1 Gateway Location Algorithm Outline

• Construct the reduced Voronoi skeleton of the map.

• Construct the isovist field F of the Voronoi skeleton.

• For each edge in the Voronoi skeleton:

– Compute p(gc|F) for each cell c.

– Create a gateway for each region with p(gc|F) > γ.

Our algorithm for finding gateways, outlined in Algorithm 4.1, identifies these regions
of visual change. We begin by computing the isovist field for the environment. We then
identify where significant changes in the isovist field occur and create gateway in each of
these regions. This approach generates false positives due to clutter, discretization errors, or
incomplete knowledge of the environment. However, these false positives will be handled
in the second phase of the classification process. The only requirement is to avoid false
negatives because they cannot be discovered by our MCMC algorithm and result in distinct
areas always being considered as one.

4.2.1 Calculating the Isovist Field

Within an occupancy grid, the isovist field can be approximated by calculating an isovist
for each cell located in free space. In an occupancy grid, an isovist can be calculated by
tracing some number of rays, Nrays, along angles in the range θ ∈ [0, 2π) from the isovist
position (x, y) until they hit either an occupied cell, the edge of the map, or some maximum
ray length rmax. The isovist polygon is created from these rays by connecting the endpoints
of adjacent rays. Note that an isovist polygon contains the same data as if a 360°laser scan
was gathered at (x, y), as can be seen in Figure 4.1a.

To find gateways, we compute the isovist field for the Voronoi skeleton of the envi-
ronment. The Voronoi skeleton is a discretized approximation of the Voronoi graph of the
environment, consisting of junctions, which are cells equidistant to three or more obsta-
cles, and edges, which are a sequences of eight-way connected cells in the occupancy grid

45

Figure 4.2: The eccentricity isovist field of the third floor of the Beyster building. The colors associ-
ated with the eccentricity area scaled between blue = 0, green = 0.5, and red = 1. Corridors have an
eccentricity approaching 1, and thus appear as shades of red. Intersections between corridors have
eccentricities that depend on the relative length of the incident corridors, so their color varies be-
tween orange, green, and blue. Notice the strong gradient that forms around the boundary between
hallway intersections and office doors.

that are adjacent to two obstacles and run between junctions. We construct to the Voronoi
skeleton using the algorithm described by Lau et al. [76].

In addition to reducing the computation needed to detect gateways, the Voronoi skeleton
serves two additional purposes. First, isovists near the walls and other obstacles in the
map can change dramatically based on clutter or noise in the occupancy grid. Using the
Voronoi skeleton reduces the noise in the isovist field by only computing isovists that are
maximally far from obstacles for a given part of the environment. Second, the Voronoi
skeleton simplifies the creation of area hypotheses after the gateways have been computed
by providing connectivity information between gateways, which is discussed in Section 4.4.

4.2.2 Finding Potential Gateways

Gateways in the environment occur where the visible area undergoes a substantial change.
To measure the change in the environment, we compute three types of gradients in the
Voronoi isovist field. The max gradient is the gradient of the isovist field at a cell in the
skeleton. The sum gradient is the integral of the gradient within a small radius r of a cell.
The boundary gradient splits the isovist in two halves, one on each side of the shortest line
segment running through the isovist center, as shown in Figure 4.3. The gradient is the
change in the isovist scalar computed separately for each half-isovist.

Using the three types of changes, we compute a feature vector for each cell in the

46

Figure 4.3: A split isovist divides the isovist in two halves. The split is along the shortest isovist
line running through the center of the isovist. The half of the isovist that a particular ray belongs to
is indicated by its color. The boundary gradient is the change in an isovist scalar computed for the
half-isovists.

Voronoi skeleton that contains the max, sum, and boundary gradients for each scalar listed
in Table 4.1. The max-gradient is computed using a quadratic Savitzky-Golay filter [77],
which helps smooth noise in scalar field caused by discretization effects. For the sum-
gradient, we use a radius of r = 1.

We find gateway hypotheses by computing the likelihood of a gateway being located at
each cell in the Voronoi skeleton using:

p(gc|F) = ηp(F |gc)p(gc) (4.1)

where p(F |gc) is learned from hand-labeled maps using an AdaBoost classifier with
decision stumps and p(gc) is a uniform prior. We calibrate the distribution scores to more
accurately reflect the underlying probability distribution using logistic correction [78].

Next, we find all cells along the edge where p(gc|F) > γ. We create one gateway for
each connected cluster of cells with probability above γ. We empirically found a value of
γ = 0.15 to yield a very low number false negatives while keeping the number of false
positives manageable.

We create a gateway gc by connecting the two closest obstacles to cwith a line segment.
This definition can generate gateways that intersect or share endpoints. We filter these
gateways using a simple check. If two gateways intersect or both endpoints are within a
small amount (0.25m), we keep the more probable gateway and discard the other.

47

4.3 Classification Problem Formalization

The set of gateway hypotheses represents the potential boundaries between areas in the
environment, thereby defining a set of area hypotheses in the map. Together, these gateway
and area hypotheses define the variables in a graph, which we call the hypothesis graph,
H = (V,E). In the hypothesis graph, V = {A,G}, where A is the set of areas, and G is
the set of gateways. Each gateway is connected to the two areas it bounds, and each area is
connected to all bounding gateways.

Each area node a ∈ A represents an area hypothesis and has a domain consisting of
three possible labels L(a) ∈ {Ψ, P∆, PD}. Each gateway node g ∈ G represents a gateway
hypothesis and is a simple Boolean variable B(g) ∈ {0, 1}, which indicates whether or not
the gateway is an active boundary, that is whether the area hypotheses on the two sides of
the gateway should be considered one area (B(g) = 0) or two distinct areas (B(g) = 1).

The goal of the place classification algorithm is to find the most probable assignment
of labels to A and active gateways in G that satisfy a set of constraints within the map M .
The probability of an assignment of values to H is:

p(H|M) = p(G,A|M)

= p(G|A,M)p(A|M)

≈
|G|∏
i=1

p(gi|A,M)

|A|∏
j=1

p(aj|M) (4.2)

In this model (4.2), we make the Naı̈ve Bayes assumption and treat the probability
of each gateway as independent of other gateways, and the probability of each area as
independent of other areas.

Note however, that a gateway’s probability is conditioned on the areas it bounds in
addition to the map. The intuition is that certain adjacency relations are more common
than others. For example, destinations occur more frequently along path segments than at
decision points, so gateways separating path segments and destinations are more probable
than those separating decision points and destinations.

4.3.1 Area Label Probability

In most cases, the constraints on possible labels produce many consistent labelings for the
areas in the environment. To address the ambiguity amongst labelings for an area a, we
calculate the probability of a particular label L(a), given a feature vector za for an area

48

within the map M :

p(L(a)|M) = p(L(a)|za)

= p(za|L(a))p(L(a))/p(za)

≈ p(za|L(a)) (4.3)

where L(a) ∈ {Ψ, P∆, PD}, and we assume a uniform prior p(L(a)) across all possible
labels and a uniform prior p(za) across all possible feature vectors.

An essential feature of the area label probability is the ability to express degrees of
confidence in the assignment of a particular label to an area. By examining the relationship
between the probability for all possible labels, we can quantify how ambiguous a portion
of the environment is. Being able to quantify is essential to the direct the MCMC sampling
(Section 4.4) to high-probability portions of the search space.

The features za used to compute the likelihood function p(za|L(a)) for an area (Ta-
ble 4.1) are a combination of isovist-based features that describe the local environment and
visibility graph-based features that describe the area’s relationship with the global environ-
ment. These features have been previously used to analyze environments [79, 80, 12, 13,
29]. Our approach hypothesizes the boundary of a place independently of its classification.
Thus, we are also able to calculate features of the free space contained within the area as
well as statistics about the isovist field instead of relying only on individual laser scans or
isovists, as in other approaches [12, 13, 32, 30].

Individual Isovist Features
Area

Perimeter
Eccentricity
Circularity
Waviness

Compactness
Ray compactness (µd/maxd)

Local minimum angle1

{µ, σ, γ} ray distance
{µ, σ} distance to center of polygon

{µ, σ} difference in length of adjacent rays

Table 4.1: Individual isovist features used to calculate appropriateness.

1Angle between local minima of isovist ray distances [12]

49

Area Features
Number of gateways

Average gateway length
Maximum gateway length

Mean distance between gateways
Shape eccentricity
Shape circularity

Ratio of gateway length to shape perimeter
Minimum loop in distance Voronoi skeleton [13]

Eccentricity of Voronoi skeleton
{µ, σ} of the eccentricity isovist field
{µ, σ} of the circularity isovist field
{µ, σ} of the waviness isovist field
{µ, σ} of the compactness isovist field
{µ, σ} of the ray compactness isovist field
{µ, σ} of the local minimum angle isovist field

σ/µ of isovist area
σ/µ of isovist perimeter
σ/µ of isovist ray distance

σ/µ of isovist distance from polygon center
σ/µ of the distance ratio of adjacent isovist rays

{µ, σ} of the clustering coefficients of the visibility graph [79]
{max, µ, σ} of the betweenness centrality of the visibility graph [81]

{µ, σ} of the page rank of the visibility graph [82]
{µ, σ,max} of the betweenness centrality of the Voronoi skeleton [81]

Table 4.2: Area-based features used to calculate appropriateness.

Using hand-labeled maps, we trained two classifiers to distinguish between path seg-
ments, destinations, and decision points. Like Mozos et al. [12], one isovist classifier was
trained to classify a single isovist using the individual isovist features 4.1. The other clas-
sifier was trained using to classify an area hypothesis using the area features 4.2. Both
classifiers were trained using AdaBoost with decision stumps with a one-versus-all ap-
proach.

The probability αLa of a label L applying to an area a is calculated by combining the
results of the area and isovist classifiers:

αLa =
parea(za|L(a))piso(za|L(a))∑
l∈{Ψ,P∆,PD} parea(za|l)piso(za|l)

(4.4)

where parea is the area feature classifier and piso is the isovist feature classifier. piso is

50

computed by taking the mean of the probability the isovists contained in the area.

4.3.2 Gateway Boundary Probability

The probability of a gateway vertex p(g|A,M) from (4.2) is a distribution over the values
B(g) = {0, 1}. We compute this distribution using (4.5):

p(g|A,M) ≈ p(g|M)p(g|A) (4.5)

p(g|M) is the probability computed by the gateway classifier in (4.1).
To define p(g|A), we assume a gateway is conditioned only on its adjacent areas p(g|N(g)).

We compute a categorical distribution all thirty-two possible tuples of the gateway active
flag and labels 〈B(g), a1, a2〉. Thirty-two pairs are possible because we distinguish between
adjacency at a path segment’s endpoint versus along its side.

We estimate the distribution by simply counting the instances of each label combination
in the hand-labeled maps used for training. A uniform Dirichlet prior is used to avoid zero
probability singularities for pairs with no instances.

4.3.3 Area Label Constraints

Many assignments of values to H are not valid representations of the environment as de-
scribed in Table 3.3, which imposes restrictions on the valid configurations of areas for an
environment. These restrictions can be formulated as constraints on the possible labels that
can be assigned to the areas in A. These constraints are as follows.

• A path segment must terminate at a place.

• A decision point must be adjacent to at least two unaligned path segments.

• An area on the left or right side of a path segment must be a destination.

• A decision point is only adjacent to path segments or destinations.

• The graph induced by the path segments and decision points is connected.

4.3.4 Factor Graph Formalization

The place classification problem described in this section can be formulated as a factor
graph that describes the probabilistic model associated with areas, gateways, and the con-
straints between them. Each area and gateway is represented by a variable in the factor
graph.

51

(a) (b)

Figure 4.4: The factor graph representation of a T-intersection. Note how the unaligned constraint
must connect with every area and gateway hypothesis.

Five types of factors exist in the graph:

• The probability distribution over labels for each area.

• The probability distribution for a gateway, given the change in the isovist field.

• The probability distribution for a gateway, given its boundary areas.

• The adjacency constraint between areas that share a gateway boundary.

• The neighborhood constraint between an area and its adjacent gateways and area
hypotheses.

The distributions associated with (1), (2), and (3) are detailed in Sections 4.3.1 and
4.3.2. The constraint factors are factors that take a value of 1 or 0 depending on whether
or not the constraint is satisfied. Thus, any area a conditioned on a failing constraint has
p(a) = 0.

Figure 4.4 shows an example of the factor graph for a map containing a single T-
intersection. The area and gateway factors correspond closely to the CRF model from
Friedman et al.[13], but the constraint factors are unique to our approach.

Unfortunately, the structure of this factor graph makes approximate inference using
loopy belief propagation infeasible. The neighborhood constraint must be connected to all
gateways and areas adjacent to an area. For the T-intersection, 3423 states exist, and more
complex and cluttered environments have many more potential gateway boundaries.

Worse still, the neighborhood constraint needs to account for gateways that can poten-
tially be adjacent to an area in the final classification of the map, which means that not only
gateways directly adjacent to an area, but theoretically all gateways and areas in the map
have to be connected for the neighborhood constraint to account for all possible gateway
configurations.

52

4.4 Place Classification with MCMC

Formally, the goal of the place classification algorithm is to find an assignment of area
labels {∀a ∈ A : L(a) ∈ {Ψ, P∆, PD}} and boundary active flags {∀g ∈ G : B(g) ∈
{0, 1}} that satisfies all constraints described in Section 4.3.3. However, exponential growth
in the number of possible states in the factor graph for the constrained place classification
problem means a solution cannot be found via exact (or approximate) inference using belief
propagation because the size of messages being passed around the network grows exponen-
tially with the number of gateways in the map.

We address the exponential growth by using a two-step approach for place classifica-
tion. First, we find the approximate marginals for all areas and gateways using loopy belief
propagation on a simpler factor graph without constraint factors. Note that even though
the constraints are not explicit, the boundary probability p(g|N(g)) provides a soft con-
straint on the valid relations between adjacent areas because no invalid relations appear
in the training data. Next, we use Markov chain Monte Carlo (MCMC) sampling [83] to
efficiently search for a complete assignment of values to variables. The basic algorithm is
listed in Algorithm 4.2 and described in more detail below.

Algorithm 4.2 PlaceClassificationMCMC(H)
Input: H : The hypothesis graph of an environment.

1: H ′ ← LoopyBeliefProp(H)
2: while IsInconsistent(H) do
3: F ← InconsistentAreas(H)
4: T ← ∅ // A collection of possible transformations to H .
5: for n = 1 to Nsamples do
6: f ← Sample(F)
7: TG ← SampleTransformationSequence(f , H)
8: T .Add(TG)
9: end for

10: Tn ← Sample(T)
11: for t in Tn do
12: H ′ ← ApplyTransformation(t, H ′)
13: end for
14: end while
15: return H ′

Each iteration of MCMC sampling transforms the hypothesis graph to a new state:
H → H ′. An iteration begins by finding the set of all inconsistent areas F (areas with at
least one failing constraint) in H . The inner loop creates Nsamples possible transformation
sequences of H . Each transformation sequence is a sequence of transformations that as-

53

Algorithm 4.3 SampleTransformationSequence(f , H)
Input: f : An inconsistent area in H .
Input: H : The hypothesis graph containing f .

1: G← f
⋃
N(f) // Add neighbors of f to sampling set.

2: H ′ ← H
3: T ← ∅
4: Ntrans ← |G|
5: n← 0
6: while IsInconsistent(f) and n < Ntrans do
7: a′ ← UniformSample(G)
8: ta′ ← GenerateTransformations(a′, H)
9: t′ ← Sample(ta′)

10: T .Add(t′)
11: H ′ ← ApplyTransformation(t′, H ′)
12: n← n+ 1
13: end while
14: return T

signs new values to a subset of nodes in the neighborhood of f ∈ F . After creation of the
transformation sequence, the sequence to apply to H is sampled from T . The probability
of sampling t′ ∈ T is p(Ht′ |M)/

∑
t∈T p(Ht|M). Using these transformations and the

probabilistic model, H quickly converges to a consistent solution.
When computing p(Ht′ |M) during sampling, we add a penalty pf = ω|F | computed

using the number of failing constraints for a hypothesis, where F is the set of failing con-
straints. We initialize ω = −3. Then if the number of constraints |F | does not decrease
between iterations, we increase ω by 5%. In this way, the constraint penalty will come to
dominate the overall probability of a hypothesis, forcing the search to out of an inconsistent
local minima and to other portions of the search space.

Algorithm 4.3 attempts to find a transformation sequence to H that makes an incon-
sistent area f consistent. To solve the failing constraints associated with f , we consider
transformations to its local neighborhood in the graph N(f) because f ’s constraints di-
rectly depend on these neighboring areas.

The goal of sampling a transformation sequence is to make an area consistent. Con-
sequently, we attempt to sample transformations until the area is consistent. However, the
sampling can’t be guaranteed to find a solution on any given iteration. To ensure that we
don’t waste excessive resources attempting to solve a particularly difficult problem, we
limit the total length of a sequence to the square of the size of the neighborhood, |N(f)|2.
Doing so ensures that samples are spread widely enough through the search space to even-
tually find a reasonable solution.

54

(a) Change label (b) Merge areas (c) Split area

Figure 4.5: Examples of the transformations sampled by our MCMC algorithm. The top row of
maps are the initial maps and the bottom row are the maps after the transformation was applied.
Dark colors indicate areas with failing constraints, while light areas have all constraints satisfied.
As can be seen, some transformations cause new constraints to fail, while others solve constraints.

To find the next transformation in the sequence, we sample an area a′ ∈ G, generate
all possible changes to a′, and then sample one of the transformations t′ and add it to the
sequence T . An area a′ is a connected subgraph of H containing a subset of A joined only
by inactive gateways (B(g) = 0).

For an area a′, we generate a set of possible transformations that create a new graph H ′.
These changes are described below and shown in Figure 4.5.

• Change the label for a′.

• Merging a′ with adjacent areas with the same label.

• Removing and relabeling an area from a′ and merging it with any neighbors with the
new label.

• Splitting a′ into multiple areas by changing an inactive gateway to be active. The
split areas are merged with any adjacent areas with the same label.

55

After applying the transformation t′ to H ′, the areas in G change. Some transforma-
tions create new areas or remove them. As areas are created or removed, G is updated
accordingly so the areas sampled are not the same on each iteration.

We run the MCMC sampling until a configuration H∗ is found that satisfies all con-
straints. Once all constraints are found, we further improve the labels by performing a
deterministic local search starting from H∗. If a change is found that increases the proba-
bility of H∗, we apply it. This process iterates until a local maximum is found.

4.5 Incremental Place Detection

The place classification algorithm described so far is suitable for extracting a topological
map from an existing global metrical map. However, global topological mapping requires
places and their associated topological events to be detected incrementally within the LPM
as the robot explores the environment. This problem is more difficult because less infor-
mation is available about the overall structure of the environment and because the robot’s
knowledge of the environment changes as the robot explores. Furthermore, the classified
places must be stable across time to avoid false positive or false negative place detections,
which can cause an incorrect topological map to be built.

The most straightforward approach for place detection is to run the above place classi-
fication algorithm on each LPM constructed during exploration of an environment and to
use the resulting places and topological events for global topological mapping. However,
as the robot travels through and explores the environment, its knowledge of the structure
and shape of the environment changes. The changing structure of the map will change the
visibility-based features that we rely on for locating gateways and calculating the probabil-
ity of the area labels. These changing features can cause the solution found by the labeling
algorithm to change, as shown in Figure 4.6.

A label changing while a robot is in that area amounts to the robot changing its mind
about the topological structure of the environment. As a result, portions of the global
topological map must be re-evaluated whenever the labels change, which can be computa-
tionally expensive. Also, if following a series of turn-based directions, an error can result
in the robot becoming lost or not reaching its intended goal.

We make three modifications to our place classification algorithm to improve the stabil-
ity of the estimated labels. First, we track the final gateway boundaries over time to ensure
the gateways that defined the place boundaries from the previous solution are included in
the set of potential gateways for the current iteration. Second, we defer the detection of
transitions to new areas when they are sufficiently uncertain. Finally, we separate previ-

56

(a) (b) (c)

Figure 4.6: The area labels for the environment will change as the robot explores more of the
environment. In (a), the path segment the robot (red square) is currently on appears to end. In (b) the
robot has explored more of the environment and now detects what it believes to be a destination on
the left side of the path segment. In (c), the robot has moved through the zig-zag in the environment
and sees a long path segment. Upon seeing this path segment, the previously-visited environment is
determined to be a sequence of path segments and decision points, rather than a single destination
as was initially found in (b).

ously visited areas from areas currently being explored and consider only the latter during
place classification.

Gateway Consistency The potential gateways in the environment are found based on the
changes in the visibility of the environment. For a static global metrical map, this visibility
information does not change over time. However, within the map of small-scale space,
the visible portion of the environment changes as the map stretches and scrolls with the
robot’s motion. As a result, gateways that formed boundaries between labeled places can
disappear due to a change in the map causing previously labeled places to change. Our
straightforward solution to this problem is ensure all gateways from the places found on
the previous update exist on the current update.

Deferring Area Transitions During incremental place detection, the boundary of the
map is continually adjusted as new parts of the environment come into view. However, dur-
ing exploration the map will sometimes simply not contain enough information to defini-
tively establish the area labels, as illustrated in Figure 4.6.

Fortunately, the robot knows what it doesn’t know and can easily identify the unex-
plored frontiers in the map. Using these frontiers, we define an uncertain transition as a
transition from a path segment or decision point to a destination that contains a frontier
large enough for the robot to travel through. Though more sophisticated measures of un-
certainty could be used, we find this simple check dramatically reduces the number of false
place detections.

Figure 4.6 shows how a false transition is avoided. What initially appears to be a des-

57

tination is actually some other configuration of areas, as the robot quickly discovers so no
effort is wasted undoing the results of transitioning to the incorrectly-classified destination.

Classifying Only Unexplored Territory As defined in Section 3.3, small-scale space
contains the robot’s current area, as well as all neighboring areas. With the exception of the
initial robot location, the robot was previously located at one of these neighbor areas. Dur-
ing incremental place detection, we fix the boundaries and label of this previously visited
area. By fixing this area, the search for labels is focused on the boundaries and label of the
robot’s current area. Furthermore, changes in the visibility do not alter previously detected
places. We implement this fixed-label area by adding a new constraint to the search that
simply returns false if the label or boundary of the area changes.

4.6 Detecting Topological Events

When traveling through a metric map, the robot’s motion can be described by a sequence
of poses x0...T . Correspondingly, the robot’s motion through a topological map can be
described by a sequence of locations l0...K (Section 3.4.1).

Whereas the robot’s pose is typically estimated at a fixed time interval, the robot’s
topological location changes only when specific topological events occur: transitioning to
a new area or turning around on a path segment. Otherwise, the robot’s motion through the
world leaves the topological location unchanged. We explain how each of these events are
detected below.

Area Transitions
An area transition event describes the motion from one area to another. In the H2SSH,
moving between two areas is accomplished by crossing a gateway separating them. To
detect area transition events, we store the sequence of robot poses since the time the last
transition occurred, xtk...T , where tk is the time at which event k occurred. After each
update of the area labels, we check each consecutive pair of poses in the sequence to see
if a line segment connecting them intersects a gateway boundary. If an intersection with
a gateway boundary is detected, then the robot has transitioned to a new area. When a
transition is detected, all poses before the time at which the transition occurred tk+1 are
erased from the pose sequence.

The above approach works well given perfect pose information. However, real-world
localization estimates have some uncertainty associated with them. As a result, the robot’s
pose estimate may jump back and forth across a gateway boundary in some situations.

58

To avoid the creation of spurious area transition events, we add a small hysteresis to the
detection of consecutive area transitions involving the same gateway. Instead of immedi-
ately generating an area transition event when the robot is detected to cross the gateway,
we require the robot to travel a fixed amount (0.5m for our implementation) before area
transition events can occur for the same gateway.

Turning Around
A turn around event describes the topological action that occurs when the robot changes
the direction it is traveling along a path segment. When the robot enters a path segment, it
is moving from the place at one end to the place at other end. Depending on which place
the path is entered from, the robot is either moving in the + or − direction. To move in
either of these directions, the robot’s heading must be approximately aligned with the axis
of the path segment pointing away from the entry place. If the robot’s heading changes
sufficiently such that it is now pointing towards the entry place, the robot can be said to
have turned around.

To detect turn around events, we compare the robot’s current heading θt with the head-
ing of the path segment’s axis θψ. If θt − θpsi > π

2
when the robot is driving forwards or

θt− θpsi < π
2

when the robot is driving backwards, then the robot is longer facing the place
in its current direction. Thus, the direction should be reversed. Like with area detection
events, we require the robot to move a short distance (1m) before confirming it has turned
around to avoid generating many events when simply turning in place.

4.7 Discussion

In this chapter, we described an algorithm for detecting and labeling places and paths in an
environment using navigation affordances. Central to our algorithm was the use of isovists
and their associated isovist field for understanding the structure of the environment.

Compared to other place detection algorithms that also rely on learned classifiers, our
approach is unique in guaranteeing the consistency of the solution with respect to an un-
derlying knowledge representation. Whereas other approaches [32, 13, 12, 33] learn a
classifier and naively apply it to maps, we enforce the constraint that place labels must be
meaningful for navigation. Consequently, while the results of our labeling algorithm occa-
sionally create some strange places, a well-defined symbolic route can be planned to every
place.

Additionally, our method supports incremental place detection as a robot explores an
environment, which no other classification approach has used. Previous approaches to place

59

detection have either focused solely on discovering decision points [11] or landmarks [25,
84]. However none of these methods provide both place detection for a structure-based
topological map and semantic classification of the environment.

60

CHAPTER 5

Evaluating Topological and Semantic
Abstractions

This chapter evaluates the place labeling and detection algorithm detailed in Chapter 4
using 17 datasets gathered on the University of Michigan campus and standard datasets
from the Radish repository [85]. We trained a classifier for each building included in our
results using a leave-one-out-approach. For multi-floor buildings, we also left all floors of
the building out of the training data. Different floors of a single building are likely to have
many of the same architectural properties and would thus bias our training data to improve
those particular results.

The output of the place labeling algorithm is a semantic map of the environment that
classifies locations in the environment based on their structure and navigation affordances.
Appendix A contains the complete set of maps used, including the metric map that was
labeled, our ground-truth semantic map, and the semantic map created MCMC algorithm.

We note that ground truth for place labels is subjective, and likely to vary between
different people and researchers. Therefore an exact comparison requires using the same
labeled test data, which is not generally available. Furthermore, no standard set of labels
exists, so they also vary between different approaches. For example, some approaches
consider doorways as one possible label [12, 13], whereas doorways in our approach are
represented by gateways, rather than a separate label. As a result where we make compar-
isons, we compare directly against results presented in the cited paper, so the ground truth
being compared against is different. However, to help understand this variability, we re-
cruited a small number of people to hand-label a set of maps. These results are presented in
Section 5.3. In other results, ground-truth was created by the author’s own interpretation of
the environment. In all cases though, the overall results presented here show our approach
to be comparable to other state-of-the-art approaches.

61

(a) Intel (b) ABuilding

(c) Fr79

Figure 5.1: The best results for our MCMC sampling algorithm on standard maps used for compar-
ison with prior approaches in Table 5.1 and Table 5.5. The colors are red for destinations, green for
path segments, and blue for decision points.

5.1 Cell-by-Cell Evaluation

Cell-by-cell comparison is the standard metric in place classification and is computed by
comparing the ground-truth label with the assigned label for each free cell in the occupancy
grid of the map being evaluated. The metric is the percent of correctly labeled cells.

Using standard maps, Intel, Fr79, and ABuilding, we compare our MCMC algorithm to
existing approaches, ranging from Mozos’ pioneering work [12] to very recent results using
deep learning [30, 28]. Other approaches exist [86, 33], but do not provide comparable
metrics. From these papers, we selected results where training data and testing data came
from separate environments, which is most comparable to our approach.

As can be seen, our results are on-par with the state-of-the-art across all three maps.
Most place classification algorithms are able to achieve similar results of classification rates
in the 90s for office-corridor-type environments and 80s for less rectilinear environments,
namely Intel.

Interestingly, the earliest work by Mozos et al. [12] achieves classification rates similar

62

Table 5.1: Comparison of cell-by-cell accuracy of place classification approaches. (%)

Method Fr79 Intel ABuilding

MCMC 95.3 84.01 95.99

Ada[12, 13] 93.94 82.23 88.6

VRFD[13] 91.50 86.40 93.60

VRFM [13] 91.30 88.20 94.20

SVM[29] 92.23 85.47

CRFoGVG[29] 99.38 76.78

SPCoGVG[29] 92.04 86.89

CNN-Liao[30] 89.76 82.40

CNN-Goeddel[28] 92.40

to more recent methods. The main improvement has been in been the spatial consistency of
approaches that integrate spatial connectivity information via the Voronoi skeleton, includ-
ing [13, 29, 30] and our work. In addition to the improved spatial consistency of Voronoi-
skeleton-based methods, our MCMC algorithm also constructs a knowledge representation
of the environment suitable for topological navigation and mapping.

Our results in the larger set of maps (see Appendix A) show similar performance to the
standard maps. In corridor-like environments like the Infinite Corridor, EECS, or BBB, we
have strong results. Our algorithm struggles more in environments with larger open spaces,
like GGB or CSAIL, where large open spaces with substructure are interpreted as large
destinations rather than a sequence of path segments and decision points.

In the worst case, significant clutter causes oversegmentation of map, which is readily
apparent in Figure 5.3. Here we see a great deal of confusion in the Pierpont map, where
dining tables, couches, and pillars block the visibility of the larger environment. These
occlusions create sharp gradients in the isovist field, which then create high probability
gateways. With these types of environmental features, the Voronoi-skeleton-based algo-
rithms are likely to yield higher performance because they are not subject to the constraints
our algorithm is. Alternately, if one is trying to describe how to navigate through the clutter,
the resulting H2SSH map provides a rigorous way to describe a route through the various
tables.

Another difficulty in our evaluation environments occurs when large rooms like lecture

63

Figure 5.2: Results for cell-by-cell evaluation for all test maps. Our performance across additional
environments yields similar performance to standard datasets for corridor-type environments, but
more cluttered or unusual environments cause difficulty, as explained in the text.

Table 5.2: Statistics for cell-by-cell accuracy across all test maps.

Min(%) Max(%) Mean(%) Std(%) Median(%)

68.1 98.5 85.3 9.9 87.2

halls contain significant internal structure. An appropriate representation for these rooms
would be a hierarchical structure that views them has rooms from the hallway, but small
topological maps internally. Our approach is currently unable to create this structure, as a
result features like the lecture halls along the west side of the bbbdow1 environment force
unexpected decision points to appear in the middle of the main corridor.

One final note: When analyzing the results of prior works, we noticed discrepancies in
the Fr79 and Intel maps between different approaches, which we highlight in Figure 5.4. In
Figure 5.4a, the bottom right region is absent in ground-truth data provided by [12], which
we believe is the reason it is absent from later papers. In analyzing the map further, our
glass detection and mapping algorithm [87], detected glass along the wall separating the
orange and white regions, which is a possible cause for its removal from the dataset. The
other regions removed by [29, 30] in Figure 5.4a and Figure 5.4b have no easily explained
reason.

64

(a) The first floor of the Beyster and Dow buildings

(b) The first floor of the Pierpont and Chrysler buildings

Figure 5.3: Labeled maps of difficult environments at the University of Michigan.

65

(a) Fr79 (b) Intel

Figure 5.4: In the Fr79, regions labeled in orange are missing from [12, 29, 30, 28]. Additionally,
[29, 30] are missing the blue region. In Intel, [29, 30] remove the orange regions from the map.

5.2 Topological Error Evaluation

The primary aim of our place classification algorithm is to construct a semantic map rep-
resentation of the environment grounded in the affordances available to a mobile robot.
However, a cell-by-cell comparison does not capture the usefulness of the semantic ab-
straction for navigation. In particular, cell-by-cell comparison does not evaluate the spatial
consistency of the semantic labels. For example, mislabeling a rarely visited alcove has
less impact than mislabeling a decision point at the intersection of the most ¡used hallways
in a building. However, the cell-by-cell comparison does not capture topological errors in
the place labels, e.g. placing corridors in the middle of rooms or rooms in the middle of
corridors. To more directly measure topological errors in the place labels, topological edit
distance was introduced by Friedman et al. [13].

Topological edit distance (TED) compares the sequence of places along routes through
the two different labelings of an environment. Each route is converted to a string with a
different character representing each type of label and then the edit distance (with insertion
and deletion costs of 1) between the two values is calculated. Friedman et al. normalize the
topological edit distance by the length of the route, which means the range of values is 0

(for an exact match) to 200 (for every label being wrong). Thus, TED/2 is approximately
the percent of the length of a route spent in an area with the wrong label while navigating
from a starting location to a goal.

Though we present results for the topological edit distance of our approach (Section 5.2.2),
we do so only to allow a comparison with [13]. Instead we use a metric inspired by topo-
logical edit distance, Route Edit Distance (RED), which better captures error that occur
during topological navigation. Whereas topological edit distance samples the route along
the Voronoi skeleton at a fixed interval, route edit distance treats navigating through an area

66

Table 5.3: Summary of the route edit distance for all test maps.

Best Worst Mean Std Median

0.111 3.510 1.163 1.065 0.700

as a single action, regardless of its size. This distinction is important because in topological
navigation to the end of a path segment, for example, is treated as a single topological ac-
tion during route planning and execution, and not as a sequence of actions that depends on
the path’s size. Thus, route edit distance is proportional to the number of incorrect actions
that would be executed by a robot following a route described using the ground-truth map
of the environment.

5.2.1 Route Edit Distance

To evaluate our MCMC algorithm using route edit distance, we sampled 1000 random pairs
of positions in the map and computed the minimum length path between them following the
Voronoi skeleton. The string representation of the route adds a single character per area vis-
ited. The route edit distance is computed by comparing the string with the string generated
in the ground-truth map using an edit distance with insertion, deletion, and modification
costs of 1. We use a modification cost of 1 so that we get a one-to-one correspondence
between action errors, i.e. visiting a decision point instead of a path segment, rather than a
wrong label having an edit distance of 2 like with topological edit distance.

Table 5.3 shows a summary of the route edit distance for all test maps. On average our
approach generates about 1 error per route through the environment. However, exactly how
these errors manifest themselves in real-world navigation is difficult to determine because
a variety of error-recovery techniques are possible in topological navigation. If we consider
a robot navigating under the direction of a human operator, this error rate means the robot
would require assistance in reaching its goal on average once per route.

The error rate only provides an average number of interventions, which can be affected
by outliers or small portions of the environment that are poorly labeled. Table 5.4 shows
the zero error rate for our test maps. The zero error rate is the percentage of routes with
a route edit distance of 0, meaning the robot would successfully reach its goal with no
interventions. In over half the maps, the zero error rate is over 50% with the highest error
rate having a failure on only one-in-ten routes.

67

Figure 5.5: The route edit distances are shown here for all test maps. Maps with an edit distance
less than 1 average less than one error per route through the map. Notice though that a high cell-by-
cell accuracy does not necessarily correspond to a low route edit distance. The tufts3 map has the
highest cell-by-cell accuracy (98.5%), but has an average route edit distance of 1.17 because the one
labeling failure is a decision point along the one corridor that runs through the entire environment.
Conversely, ggb2 has an accuracy of 83.8%, but a lower average route edit distance (1.07) because
most of the errors are in boundaries being in different locations relative to ground truth, rather than
the underlying topological structure being different.

Table 5.4: Zero error rate for all test maps.

Map Zero Error Rate (%) Map Zero Error Rate (%)

abuilding 89.4 bbb3 56.5

ggb3 88.5 ggb2 48.7

sdr 87.3 tufts3 37.3

eecs3 85.0 ggb1 32.4

aces3 82.9 intel 19.6

seattle 69.5 bbbdow1 13.1

intel oregon 69.2 csail3 12.8

freiburg 65.6 pierpont1 12.6

infinite corridor 62.4

68

Table 5.5: Comparison of topological edit distance.

Method Fr79 Intel ABuilding

MCMC 5.85 38.3 12.1

AdaS[13] 76.6 62.6 79.4

AdaSC[13] 74.2 59.8 35.7

VRFD[13] 23.7 25.7 18.2

VRFM [13] 21.0 22.2 14.3

5.2.2 Topological Edit Distance

We directly compare against Friedman et al. [13], who calculate a label at fixed distances
along the Voronoi skeleton, by using the same approach for computing the topological
edit distance. The exact distance between nodes was not indicated in their paper, and
we estimate it to be 0.5m. For the following results, we generated 1000 random pairs of
positions in the map and computed the minimum length path between them following the
Voronoi skeleton.

A comparison of topological edit distance shows our approach produces a comparable
description of the environment than both variations of Voronoi random fields [13]. For Fr79
and ABuilding, our excellent classification accuracy and greater spatial consistency results
in lower error with respect to ground-truth.

However, our performance on the Intel map is inferior. We believe this to be caused
by the different in types of labels. The VRF uses single nodes for intersections, which are
easily defined, even in curved hallways like Intel. Our decision point makes it less clear
where a decision point might be located and so our algorithm creates a curved path segment
instead. This path segment is along the shortest path between many areas in the map, so
it causes the edit distance to spike. Comparing the labeled maps visually (Figure 5.6 vs.
Figure 1 [13]) though, the overall topological structure of our map better classifies the paths
and decision points. Our description of the path running through the center of the map is
correct (though not the decision point at the end), whereas the VRF creates a disconnected
path segment surrounded by two rooms.

5.3 Human Labeling Variability

In all evaluation so far, we have compared maps against hand-labeled ground truth maps
created by the author. However, interpretations of an environment will vary from person to

69

Figure 5.6: The labeled Intel map produced by our MCMC algorithm. (Repeated from Figure A.1
for convenience.)

person. This variability can have a potentially significant impact on the evaluation of the
place labeling algorithm.

To better understand the variability in a person’s interpretation of an environment, we
asked eight robotics graduate students to hand-label six occupancy grid maps. For each
map, they were asked to draw gateway boundaries and label each of the areas as destination,
decision point, or path segment. The maps were then converted into digital maps by the
author.

Using these human-labeled maps, we perform two analyses. First, we evaluate our
algorithm against each of these alternate ground-truth maps, as well as our ground-truth
used for other results. Second, we evaluate each human-labeled map against all other
human-labeled maps. We also create a visualizations of the per-pixel agreement between
the human-labeled maps (an example (Figure 5.8) is copied from the complete set of results
in Appendix A.2).

Table 5.6 and Figure 5.7 show the variability in the semantic interpretation of the envi-
ronments amongst the participants labeling maps. There is strong agreement about the rec-
tilinear corridor-and-office environments (eecs3 and bbb3) – note that all students work in
BBB and attend classes in EECS, so they are very familiar with the environments. Once the
environment is less orthogonal and contains larger open spaces though, we see much more

70

Table 5.6: Variability of MCMC and human labels compared against human labelings.

Method MCMC Human MCMC Human

Map Cell-by-cell Cell-by-cell Route edit distance Route edit distance

bbb3 90.8± 0.03 92.9± 0.03 1.00± 1.34 1.41± 1.56

bbbdow1 64.5± 0.05 71.7± 0.09 4.05± 1.30 3.34± 1.72

csail 69.6± 0.03 71.3± 0.07 2.89± 0.57 2.64± 1.00

eecs3 94.8± 0.03 94.6± 0.03 0.94± 1.09 1.30± 1.44

intel 85.8± 0.03 89.7± 0.04 1.84± 1.58 1.72± 1.56

pierpont1 65.5± 0.02 76.9± 0.07 4.20± 0.76 1.80± 0.79

disagreement. For example in Intel, we found participants were split evenly on whether
a single path segment runs along the right side of the map or whether it is multiple path
segments intersecting at decision points along the curve (Figure 5.8). We see similar dis-
agreement about the precise location of the bottom left decision point.

For most of the experiment maps, our MCMC algorithm produces results in line with
the variability observed amongst the labels created by experiment participants. However,
the oversegmentation problem in pierpont1 that breaks up the large exhibit hall and sitting
areas has no analogue in the human-labeled maps, which all easily separate the clutter from
the large-scale topological structure.

5.4 Discussion

We have evaluated our MCMC place classification using an extensive set of maps, created
at the University of Michigan and retrieved from the Radish repository [85]. Compared
to other approaches using standard datasets, our algorithm exhibits state-of-the-art per-
formance. We achieve the highest cell-by-cell accuracy of any method on the ABuilding
dataset and the second highest accuracy on the Fr79 dataset. However, as shown in Fig-
ure 5.4, the results from Shi et al.[29] have some rooms removed from their maps, so a
direct comparison based on their published results is less meaningful.

To evaluate the quality of the topological abstraction created by our algorithm, we intro-
duce a metric, Route Edit Distance, based on the Topological Edit Distance [13] to compute
an estimate of the number of errors the robot would make navigating to a goal using the
topological abstraction. On average, the abstraction generated by our MCMC algorithm
has only one error per route.

71

(a) bbb3 (b) bbbdow1

(c) csail (d) eecs3

(e) intel (f) pierpont1

Figure 5.7: These plots show the raw comparison data used to generate the numbers in Table 5.6.
Each ’+’ is shows the result of comparing one human labeling against another. Each ’x’ is a com-
parison of our MCMC labeling against a human labeling. Note that for most maps, our MCMC
results fall within the cluster of human-vs-human results. In the bbb3 and eecs3 maps, an outlier
in the human labels exists. This person placed a decision point in front of each office door, which
causes the much higher route edit distance between their map and all other labels, including our
MCMC labels.

72

(a)

(b)

Figure 5.8: Human variability results for intel. From Section A.2: (a) shows the consensus amongst
the different labelings. White indicates complete agreement between all maps, while light gray is
maximum disagreement (all classes with the same number of votes), the grayscale value is set using
Lmax − Lmin. Black areas in the map are free space cells without a semantic label because they
correspond to areas on the other side of glass walls or errant beams during mapping. (b) shows what
labels were assigned by the human labelers. Each labeled map votes green (path segment), red (des-
tination), or blue (decision point) for each cell in the combined map. Thus, path segment/decision
point ambiguity is teal, decision point/destination ambiguity is purple, and path segment/destination
ambiguity is brownish.

73

In our evaluation, we have introduced many new maps not previously used in the place
classification literature. Some of these environments are similar to previous hallway-and-
office maps, but others are considerably larger and more varied than any previously used
maps. Our MCMC algorithm fails to attain the same performance on these more complex
maps than it does on the simpler standard maps.

Some of the difficulty with these environments is due to our algorithm, however we
hypothesized that some errors were due to natural variation in the semantic interpretation of
an environment. We performed an initial experiment to test this hypothesis by having eight
robotics graduate students hand-label maps of six environments of varying complexity.

Our human map-labeling experiment shows that ground-truth for semantic maps is ex-
tremely subjective. For simple environments, like a building with mostly offices along
hallways, we see little variation. Beyond these environments though, there can be little
expectation that two people will agree on exactly how to describe many environments.
Consequently, future research in semantic mapping should incorporate ground-truth from
multiple sources to better evaluate the quality of the generated abstractions.

While variability in interpretation (Table 5.6) can account for much of the below-
expected performance, bbbdow1 and pierpont1 present challenges that our current ap-
proach cannot handle. In particular, densely cluttered environments, like tables in a com-
munal dining space, create high-confidence gateways that require a probabilistic model that
considers more than just the distribution across the initial area and gateway hypotheses to
dismiss as insignificant.

74

CHAPTER 6

Scalable Topological Mapping Using Lazy
Evaluation

This chapter presents a scalable approach to topological mapping. We describe a topolog-
ical mapping algorithm that uses lazy evaluation to search the space of topological map
hypotheses. By performing lazy evaluation on the map hypotheses in the tree of maps,
our algorithm avoids the need to prune hypotheses to maintain computational feasibility.
Furthermore, the heuristic search focuses expansion of the tree on the most likely hypothe-
ses, allowing a small number of hypotheses to be evaluated for each visited area, thereby
allowing real-time updates. Thus, the algorithm operates online and in real-time, while
ensuring the correct map is not pruned from the hypothesis space, which, to the best of our
knowledge, no existing topological mapping algorithm achieves.

6.1 The Topological Mapping Problem

A topological mapping algorithm builds a graph-like map that identifies the connectivity of
places within a robot’s environment. The input to the algorithm is a sequence of topological
events that describe the places visited by the robot, ZK = {z0, . . . , zK}, and the actions
taken at each place, UK = {u1 . . . uK}. The goal is to find the correct topological map of
the environment, M∗

K , consistent with the detected places and actions taken by the robot.
In most cases, multiple consistent topological maps exist for a given sequence of places

and some ambiguity exists as to which topological map is correct. As a result, most topo-
logical mapping algorithms maintain many hypotheses about the structure of the enviro-
ment. For each place in the sequence, a number of potential map hypotheses are created,
each asserting a potential loop closure with an existing place or the discovery of a new
place. The benefit of maintaining multiple map hypotheses is that it allows ambiguity
about a loop closure to be resolved when disambiguating information becomes available in
the future. The basic topological mapping algorithm is outlined in Algorithm 6.1.

75

Algorithm 6.1 BuildTopologicalMap(ZK , UK)

Input: ZK : A sequence of detected places
Input: UK : A sequence of actions taken at the corresponding place
Output: HK : A set of consistent topological maps {HK = {h1

K , . . . , h
n
K , . . . , h

N
k }}

1: H0 ← InitialMap(z0)
2: for k = 1 to K do
3: for hnk−1 ∈ Hk−1 do
4: UpdateRobotLocation(hnk−1, uk)
5: if IsConsistentHypothesis(hnk−1, zk) then
6: CreateChildHypotheses(hnk−1, zk, Hk)
7: else
8: DeleteHypothesis(hnk−1)
9: end if

10: end for
11: end for
12: return HK

While the topological mapping approach outlined in Algorithm 6.1 can be used naively,
the number of map hypotheses can hyper-exponentially [8], thereby making the space of
possible topological maps intractably large. To combat this exponential explosion of map
hypotheses, a number of approaches have been developed. First, the robot can explore
the environment using a strategy that minimizes the number of consistent map hypothe-
ses [16, 22, 23, 15, 88]. Second, analytic constraints, like graph planarity [89], can elim-
inate some map hypotheses. Third, metric information, like the distance between places,
and appearance models, like occupancy grids of places or a collection of visual words, can
be used to calculate a probability distribution across the consistent map hypotheses. We
will focus on this third approach, probabilistic topological mapping, along with the con-
struction of topological maps using the H2SSH representation, for the remainder of this
chapter.

Our algorithm builds on the tree of maps by developed Dudek et al. [39] to represent
the space of topological map hypotheses. The tree of maps is a data structure where each
node represents a consistent topological map hypothesis, which is a tuple containing a
topological map and the robot’s location in that map. The leaves of the tree are the map
hypotheses consistent with all observed places, and the depth of the tree is equal to the
total number of places visited. When a new place is entered, a new set of hypotheses are
generated for each leaf in the tree of maps by asserting every consistent loop closure within
each map hypothesis as well as the hypothesis that the robot has entered a new place.

Like [17], we extend the tree of maps representation by annotating each leaf of the tree

76

Figure 6.1: The topological map constructed of the standard Infinite Corridor dataset. Despite drift
in the local reference frame of the robot, the correct topological map is still the most probable map
hypothesis. Unlike a metric map, the distortion caused by local reference drift does not affect the
navigability of the map, as the robot simply navigates from place to place and the metric information
only serves as a heuristic for route planning.

with a posterior probability, which is used as a heuristic for determining the order in which
to evaluate nodes. When the robot arrives at a place, the leaf nodes are expanded in order
of decreasing posterior probability. To limit the overall size of the tree, on each update we
expand a subset of all leaf hypotheses, considering only the most probable hypotheses.

Expanding a node generates a new set of consistent map hypotheses that incorporate
the new place. The size of the tree of maps can be further reduced by lazily expanding
the child of a map hypothesis. We accomplish this reduction using the robot’s position
uncertainty. Using this approach, the robot can close small loops with little ambiguity,
while closing large loops naturally increases the robot’s uncertainty about the environment,
thereby generating more hypotheses about its possible structure.

In addition to our lazy evaluation algorithm, the H2SSH representation itself improves
the scalability of the topological mapping problem. By categorizing different types of areas
and recognizing the difference between them, the possible set of loop closures generated
when entering a new place is reduced because only a subset of places will be of the same
type. For example, the mapping algorithm can distinguish between entering an intersection
and entering an office, meaning those two actions generate disjoint sets of child hypotheses.
In contrast, with other representations with a single type of place, like the HSSH [11] or
the GVG [22], each door encountered along a corridor generates potential loop closures,
rapidly growing the hypothesis space. Though many of these possible loop closures will
quickly be eliminated, they create additional work that is completely avoided by treating
these destinations as separate from the decision points in the environment.

While the use of place when discussing topological mapping is standard, the remain-

77

Figure 6.2: The probabilistic tree of maps built by our lazy evaluation algorithm when mapping the
Infinite Corridor dataset. Nodes in the tree are red and parent-child relations are blue lines. Notice
the many leaves of the tree that are never expanded due to a low probability.

der of this chapter will now discuss topological mapping in terms of areas. This change
emphasizes that loop closures can be detected amongst any entities in the topological map
(Section 6.5).

6.2 Probabilistic Tree of Maps

In the tree of maps, the set of maps at each depth k of the tree, Hk = h0
k, h

1
k, . . . , h

N
k ,

represents the space of all topological map hypotheses consistent with all areas visited by
the robot up to event k, where the subscript k indicates the last topological event included in
the hypothesis, and the superscript n enumerates a specific map hypothesis. We extend the
tree of maps representation by annotating each leaf of the tree with a posterior probability,
p(hnk |ZK , UK), thereby creating a probabilistic tree of maps. Figure 6.2 shows the tree of
maps constructed for the Infinite Corridor dataset.

Because each depth k within HK represents the entire space of consistent topological
maps including all events update to depth k, the following holds:

N∑
n=1

p(hnk |ZK , UK) = 1 (6.1)

78

Table 6.1: Definition of symbols used to describe the probabilistic tree of maps.

Symbol Description

UK = [u0, u1, . . . , uK] The sequence of actions up to event K.
ZK = [z1, z2, . . . , zK] The sequence of observations up to event K.
zk = 〈mk, ck, λk−1,k〉 The observations at event k.

mk The LPM of the observed place at event k.
ck The local transition cycle observed at the

area k.
λk−1,k The displacement of reference frame of area

k from the frame of area k − 1.
ΛK The observed displacements between places

in ZK .
hnk = 〈Mn, Xn, An, χn〉 A map hypothesis in the tree of maps incor-

porating events up to depth k
〈a,ma, ca〉 : a ∈ Ank The set of areas in a map hypothesis hnk .

Mn
k The topological map for hnk .

Xn
k The robot’s location in Mn

k .
χnk The planar embedding of Mn

k .

Problematically though, the size of HK has the potential for hyper-exponential growth
as a function of K in many navigation scenarios [8]. Consequently, evaluation of the full
distribution in (6.1) is intractable, even for relatively small values of K, as we will show in
Section 6.6. Before describing our algorithm for combating the exponential growth of the
probabilistic tree of maps in Section 6.4, we first detail how the probability of a topological
map hypothesis is calculated.

6.3 Map Hypothesis Probability

We now describe how we calculate the probability of a map hypothesis in the probabilistic
tree of maps. As shown in Table 6.1, each map hypothesis hnk contains a topological map
Mn

k , a set of areasAnk , and a planar embedding of the map χnk . Using these values, applying
Bayes’ Rule, and dropping irrelevant conditionals, we arrive at the following equation for
the probability of a map hypothesis. The distributions in (6.4) will be described in the

79

following sections.

p(hnK |ZK , UK) = ηp(ZK |hnK , UK)p(hnK |UK) (6.2)

= ηp(cK ,ΛK ,mK |Mn
K , X

n
K , A

n
K , χ

n
K , U

K)p(Mn
K , X

n
K |UK) (6.3)

≈ ηp(cK |AnK ,Mn
K)p(ΛK |χnK ,Mn

K)p(mK |χnK ,Mn
K)p(Mn

K , X
n
K |UK)

(6.4)

6.3.1 Local Transition Cycle Likelihood, p(cK |An
K ,M

n
K)

Given a sequence of observed local transition cycles, cK = c0:k, we calculate p(cK |AnK ,Mn
K),

the likelihood of observing this sequence of local transition cycles given the topology of
the map. Since we currently assume that the local topology is correctly detected, the likeli-
hood for a local transition cycle is either 0 or 1, as defined in (6.5), where Cn

K is the global
transition cycle of the place visited at event k in Mn.

p(ck|Cn
k ,M

n
K) =

1 if ck = Cn
k

0 if ck 6= Cn
k

(6.5)

p(cK |AnK ,Mn
K) =

K∏
i=0

p(ci|Cn
i ,M

n
K) (6.6)

6.3.2 Place Layout Likelihood, p(ΛK |χnK ,Mn
K)

Given a mapMn
K and a set ΛK of lambdas λk−1,k describing the measured displacement be-

tween each successive pair of visited places, we can calculate the maximum posterior place
layout χnK . Each λk−1,k ∈ ΛK is a Gaussian distribution representing the transformation
from the origin, (0, 0, 0)k, of area ak to the origin, [(0, 0, 0)k]k−1, of area ak−1.

µλk−1,k
= (∆x,∆y,∆θ) (6.7)

Σλk−1,k
=

σ
2
∆x 0 0

0 σ2
∆y 0

0 0 σ2
∆θ

 (6.8)

The area layout χ minimizes the cost function:

Eχ = (Λχ − ΛK)TΣ−1
ΛK (Λχ − ΛK)

∝ − log p(ΛK |χnK ,Mn
K)

(6.9)

80

(a) (b)

Figure 6.3: (a) When an incorrect loop closure is made, the final layout takes on unusual shapes.
This map is a portion of the EECS Building, where no triangular loops actually exist. (b) For
reference, this is the correct map of the environment given the topological events that have occurred
up to this time.

Thus, we minimize the log-likelihood − log p(ΛK |χnK ,Mn
K) to obtain:

χn = arg max
χ

p(ΛK |χnK ,Mn
K) (6.10)

We then use this value p(ΛK |χnK ,Mn
K) as the likelihood of a given area layout. Fig-

ure 6.3 shows the optimized χnK for two topological map hypotheses.
Note that the cost function in this minimization is the same cost function used in a va-

riety of pose-graph-based SLAM approaches. The key difference between the area layout
and a pose graph lies in the nodes in the graph. In our topological SLAM, each node rep-
resents an area in the environment, whereas each node in the pose graph represents a pose
along the robot’s trajectory. This topological graph is typically a much coarser representa-
tion than the corresponding pose graph of the same trajectory through the environment.

6.3.3 Area Compatibility Likelihood, p(mK |χnK ,Mn
K)

As defined in the H2SSH, each area a ∈ An represents a non-overlapping and distinct
portion of the environment. Therefore, a map hypothesis in which distinct areas physically
overlap is less likely than a map hypothesis with no overlap. Using χn, the extent of each
LPM can be mapped into a single global reference frame, which allows for straightforward
calculation of the overlap between two areas.

For each a ∈ An, χn specifies the pose of the area center, χna . The associated LPM, ma,
can be transformed to be centered at χna , giving mχ

a . The compatibility between two areas

81

is defined in (6.11) and is based on the ratio of the overlapping extent between the areas to
the minimum of the area extents.

c(mi,mj) =
extent(intersection(mχ

i ,m
χ
j))

min(extent(mi), extent(mj))
(6.11)

Using (6.11), the overall area compatibility, p(mK |χnK ,Mn
K), of a map with Na distinct

areas is the product of the compatibility between each pair of areas in Mn.

p(mK |χnK ,Mn
K) =

Na∏
i=0

Na∏
j=i+1

exp(−βc(mi,mj)) (6.12)

6.3.4 Map Hypothesis Prior

The prior, p(Mn, Xn|UK), estimates a prior probability for a map hypothesis considering
only the actions taken by the robot – no sensor information is included. Thus, the distri-
bution represents the probability that the robot is in an environment whose map has the
structure of Mn and that the robot happens to be at Xn after K events. As discussed by
Tully et al [17], we have no way to know this distribution.

Given that we can’t know the true distribution p(Mn, Xn|UK), the simplest option is
to assume a uniform prior across all possible maps. If no assumptions are made about the
nature of the environment being mapped, then the uniform prior is the best choice. However
under weak assumptions, namely that the environment is bounded in size and the robot is
likely to revisit areas, two alternate distributions have been previously explored.

The Bayesian information criterion [90] was used to define a prior in Tully et al. [17].
This prior favors map hypotheses with fewer areas and is shown in (6.13) where |Mn| is the
number of areas in a map and K is the total number of topological events. The Bayesian
information criterion prefers simpler explanations for the presented data. An alternate way
to view this prior is that the size of the environment has an upper bound, and over time new
areas are less likely to be visited.

p(Mn, Xn|UK) ∝ exp(|Mn| logK) (6.13)

6.4 Lazy Evaluation of Map Hypotheses

The goal of our lazy evaluation algorithm is to find the most probable topological map
hypothesis for the environment that is consistent with all observations made by the robot

82

ZK and all actions taken by the robot UK . Our approach is outlined in Algorithm 6.2, and
a detailed description follows.

Algorithm 6.2 LazyEvaluation(Hk, Zk+1, Uk+1)
Input: Hk : A valid hypothesis tree
Input: Zk+1 : The sequence of topological events that have occurred.
Input: Uk+1 : The sequence of actions taken at the corresponding place
Output: Hk+1 : A new hypothesis tree with at least one leaf consistent with all k + 1

observations.
1: Lk ← Leaves(Hk)
2: Q← PriorityQueue
3: for all hn ∈ Lk do
4: Push(Q, hn)
5: end for
6: hmax ← ∅
7: while HasNext(Q) and Posterior(hmax) < Posterior(Top(Q)) do
8: hn = Pop(Q)
9: d = Depth(hn)

10: Xn
d+1 ← UpdateRobotLocation(hn, ud+1)

11: if IsConsistentHypothesis(hn, Xn
d+1, zd+1) then

12: C ← Expand(hn, Xn
d+1, zd+1)

13: for all c ∈ C do
14: Insert(Hk+1, c)
15: if Depth(c) < k + 1 then // Child is not complete, so put it on the queue.
16: Push(Q, c)
17: else if Posterior(c) > Posterior(hmax) then // Is child new best hypothesis?
18: hmax ← c
19: end if
20: end for
21: else
22: PruneHypothesis(hn)
23: end if
24: end while
25: return Hk+1

When topological event zk+1 occurs, Algorithm 6.2 performs an update to the tree of
maps to find a new map hypothesis consistent with all topological events Zk+1. To generate
new map hypotheses for the tree Hk+1, we begin by considering the set of leaf hypotheses,
Lk ⊆ Hk. A leaf hypothesis hnd ∈ Lk is a map hypothesis without child hypotheses in the
tree of maps that is consistent with all topological events up to its depth in the tree d where
d < k + 1.

As opposed to previous approaches that exhaustively expand every hypothesis in the

83

Algorithm 6.3 Expand(hn, xnd+1, zd+1)

Input: hn : A valid topological map hypothesis up to event k.
Input: Xn

d+1 : The robot’s new location after taking action ud+1.
Input: zd+1 : The next event in the topological event sequence.
Output: C : The set of consistent children of hn.

1: C ← ∅
2: if Xn

d+1 ∈Mn then // New location is a known area
3: c← 〈Mn, Xn

d+1, A
n, χn〉

4: Insert(C, c)
5: else // Arrived a frontier area
6: hnew ← AddArea(hn, zd+1) // Hypothesis that the robot is at an unvisited area.
7: Insert(C, hnew)
8: F ← Frontiers(hn)

// Search all areas with a frontier transition and close loops with compatible areas.
9: for all f ∈ F do

10: if IsPossibleLocation(f , zd+1) then
11: c← CloseLoop(hn, f, zd+1)
12: Insert(C, c)
13: end if
14: end for
15: end if
16: return C

tree of maps [17, 39], we evaluate only a subset of hypotheses and consider them in order
of decreasing probability. We determine the evaluation order by assigning a value enk to
every hypothesis in Lk. This value is an estimate of the unnormalized posterior probability
of the map hypothesis hnd after incorporating all events up to k. For those hypotheses with
d = k, enk = p(ZK |hnd , UK)p(hnd |UK). For those hypotheses with d < k, we use a heuristic
(described below) to approximate how the likelihood and prior of the map will change after
incorporating events [zd+1, . . . , zk].

While the calculated posterior for these incomplete leaves (d < k) could be used when
determining the evaluation order for hypotheses, this value overestimates the posterior of
the hypothesis’ children after incorporating future events because the likelihood of a map
hypothesis monotonically decreases as new events are incorporated. As an alternative to
the calculated posterior, we use an approximation of the posterior for these hypotheses.

The intuition behind the heuristics used is that the most probable maps are expanded
first when searching. Thus, the change in probability of already evaluated maps is likely to
be an optimistic estimate of the change in probability for maps that were initially less prob-
able. We use a heuristic for both the possible likelihood and possible prior of a hypothesis.

The likelihood heuristic, h(ld), where d is the depth of the tree at which the heuristic

84

applies, uses the minimum change in measurement likelihood from a parent hypothesis to
any its children. This quantity is equivalent to the maximum ratio of child likelihood to
parent likelihood:

h(ld) = max
(

p(Zd|hnd , Ud)

p(Zd−1|parent(hnd), Ud−1)

)
(6.14)

The heuristic gives an estimate of how we expect the likelihood of a map hypothesis to
change when incorporating the next topological event.

Our prior heuristic, h(pd), where d is the depth of the tree at which the heuristic applies,
uses the maximum value of the prior among the hypotheses at the maximum depth of the
tree K:

h(pd) = max(p(hnK |UK)) (6.15)

Combining (6.14) and (6.15), we calculate end for a map hypothesis:

end = p(Zi|hnd , Ud)h(pd)
k∏

i=d+1

h(li) (6.16)

Given the formula for the priority value associated with a given leaf hypothesis, we now
describe the lazy evaluation algorithm in full. At the start of an update, all leaf hypotheses
Lk are placed in a max-priority queue, where the priority for a hypothesis is end . At the start
of each iteration, the best hypothesis is popped off the priority queue.

Processing of this hypothesis begins by finding the new location of the robot in the
map Xn

d+1, given the latest topological event ud+1 (Line 10). The topological action ud+1

corresponds to crossing a transition in the map. Therefore, Xn
d+1 is simply assigned to be

the area on the other side of this transition. This area can either be an existing area a ∈ An

or a frontier (unknown) area.
After finding the new robot location, the consistency of the map hypothesis is checked

(Line 11). For a frontier area, the consistency check always succeeds, as no prior expec-
tation on the area exits. When the robot revisits a previous area though, the consistency
check confirms the following properties are consistent between the expected location Xn

d+1

and the detected area zd+1:

• The area types are the same.

• If at a place, the transition cycles are compatible (see Section 6.5)

• If on a path, the detected entry transition (from an endpoint or from a transition
sequence) is the same as the expected entry transition.

85

For example, if the robot detects it is at a plus intersection, but expects to be at a T
intersection, then that hypothesis is inconsistent.

The hypotheses that are found to be consistent are then expanded. When expanding
a hypothesis hnd , we use topological event zd+1. Each child hypothesis created during the
map expansion process is added to the priority queue and might also be evaluated during
the current update.

The algorithm continues until the queue is empty or a complete and consistent map hy-
pothesis has been found that incorporates all topological events up to zk+1 whose posterior
probability is greater than the posterior probability of the map hypothesis at the top of the
queue:

p(Zk+1|hnk+1, U
k+1) > p(Zk|htopk , UK) (6.17)

By using this stopping condition, the algorithm evaluates only as many hypotheses as
needed until no other hypothesis could be more probable. Thus, the quality of the measure-
ments dictate how many hypotheses need to be evaluated. Furthermore, by evaluating the
leaves in order of decreasing probability, we focus computation on the most likely portions
of the hypothesis space.

The key step in Algorithm 6.2 is Line 12, which is described in Algorithm 6.3. When
expanding a map hypothesis, the key question is: given a map hypothesis and a new event
zk+1, what are the possible loop closures that could have been made within the map (Sec-
tion 6.5)?

6.5 Loop Closures in the H2SSH

This section relies heavily on the detailed representations in the H2SSH. We refer the reader
to Chapter 3 for the complete specification of all terminolgy used hereafter.

Solving the topological mapping problem requires enumerating all possible loop clo-
sures (Line 10 in Algorithm 6.3). Searching for loop closures requires the robot to reason
about which transitions in the map have been explored and which are still frontiers. Each
transition in the map has a flag that indicates whether or not the robot has crossed it. Un-
crossed transitions are considered topological frontiers and are the locations of potential
loop closures.

There are five types of transitions can be performed in the H2SSH, corresponding to the
following possible actions:

86

(1) ψend → P : Entering the place at the end of a path segment.
(2) ψseq → PD: Entering a destination along a path segment.
(3) P → PD: Entering a destination from a place.
(4) P → ψend: Entering a path segment from one end.
(5) PD → ψseq: Entering a path segment from a destination along a side.

When the robot performs one of these actions and crosses a frontier transition, a loop
closure has potentially occurred – the alternative is the robot has entered a previously unvis-
ited area. These transitions can be divided into three possibilities: (a) entering a transition
cycle (1, 2, 3), (b) entering a path segment from an endpoint (4), (c) and entering a transi-
tion sequence (5).

Transition Cycle: A loop closure can be made between two places P and P ′ if the tran-
sition cycles are equivalent when the entry transition RP ′ in P ′ corresponds to a frontier
transition RP in P :

PossibleLoop(P,RP , P
′, RP ′) = Frontier(RP)

∧ Type(RP) = Type(RP ′)

∧ (CP = CP ′) | RP ≡ RP ′

Loop closures at places are the most common form of loop closure, as they include
loop closures that occur at decision points. For some transition cycles (most commonly
plus intersections), multiple possible loop closures can exist, whenever multiple rotations
of the transition cycle yield satisfy the condition above. For other common intersections (L
and T), only a single loop closure can possibly exist.

Path Endpoint: A loop closure can be made between the endpoint of two path segments
Ψ and Ψ′ if one of the end transitions Rend

Ψ in Ψ is a frontier and leads to the same type of
place as Ψ′:

PossibleLoop(Ψ, Rend
Ψ ,Ψ′, Rend

Ψ′) = Frontier(Rend
Ψ)

∧ Type(Rend
Ψ) = Type(Rend

Ψ′)

Loop closures through path endpoints are rare events. In order for a frontier gateway
to exist at the end of a path segment, the robot must drive far enough down a path segment
to see the end transition, then turn around and exit through the entry transition. Generally,
path segments are traversed in their entirely as the robot moves around the environment.

87

(a) (b)

Figure 6.4: The trajectory driven by the robot (a) while autonomously exploring the third floor of
the EECS building at the University of Michigan and the constructed topological map (b). The robot
drove autonomously between goals randomly selected from a pre-defined set until the full map was
explored.

Transition Sequence: A loop closure can be made between two path segments Ψ and Ψ′

along a transition sequence if a frontier transition Rseq
Ψ exists in the transition sequence TΨ

for Ψ:
PossibleLoop(Ψ, Rseq

Ψ ,Ψ′, Rseq
Ψ′) = Frontier(Rseq

Ψ)

For a given transition sequence TΨ, a possible loop closure exists for every frontier
transition. However, these transitions are rare. In most cases, a destination along a path
segment has a single transition, so exiting the destination does not generate any loop clo-
sures. Possible loop closures occur only if the destination has multiple transitions, and the
robot enters from one transition and exits through another.

6.6 Results

We evaluated our lazy evaluation algorithm in on datasets of environments at the Univer-
sity of Michigan as well as the standard Infinite Corridor dataset. To collect our datasets,
we used our robotic wheelchair, Vulcan, equipped with two laser rangefinders, an inertial
measurement unit, and wheel encoders. Figure 6.4 shows the eecs3 environment and its
corresponding topological map found by our lazy evaluation algorithm.

The goal of our lazy evaluation algorithm is to enable topological mapping of large-

88

(a) eecs3 (b) infinite corridor

Figure 6.5: These plots show the number of hypotheses expanded on each iteration of our lazy eval-
uation algorithm compared with the naive exhaustive algorithm. Note the log-scale on the y-axis.
For both eecs3 and infinite corridor, lazy evaluation avoids the exponential growth in the number
of hypotheses being expanded. Whereas the exhaustive evaluation shows a continual increase in
the hypotheses expanded, lazy evaluation often does little work, only spiking when potential loop
closures are encountered by the most probable map. Flat portions in the eecs3 for both lazy evalua-
tion and exhaustive search correspond to the robot backtracking along its trajectory. The exhaustive
search for eecs3 stops after 74 events because the system exhausted its 16GB of available RAM.

scale environments while avoiding the exponential explosion of possible map hypotheses.
We evaluate the success of our approach by considering to quantities related to the search.
First, we look at the number of map hypotheses expanded on each iteration of the algorithm.
The number of expanded hypotheses is the amount of work performed on a single iteration
of Algorithm 6.2. Second, we consider the total number of leaves in the tree of maps after
completing an iteration of Algorithm 6.2. The number of leaves represents the size of the
search space being considered during lazy evaluation. As can be seen in Figure 6.5 and
Figure 6.6, our lazy evaluation algorithm avoids the exponential growth in the number of
map hypotheses expanded when a new event occurs and exponential growth the number of
hypotheses in the portion of the hypothesis space being searched (leaf hypotheses).

The difference in the number of hypotheses expanded (Figure 6.5) in eecs3 versus in-
finite corridor shows how our algorithm responds to increased motion uncertainty. The
Infinite Corridor dataset contains significantly longer loops and has worse odometry and
laser scans than is available on Vulcan. As a result, the estimates in LambdaK have much
more uncertainty. As a result, the number of leaves grows more steadily than in the EECS
environment, which makes larger, less frequent jumps, but is more confident in its map
hypotheses.

The growth in the number of map hypotheses versus the number of events matches the
behavior of other probabilistic approaches [8, 17], where a small number of map hypotheses

89

(a) eecs3 (b) infinite corridor

Figure 6.6: These plots show the number of leaves in the tree of maps after each iteration of our
lazy evaluation algorithm compared with the naive exhaustive algorithm. Note the log-scale on
the y-axis. For both eecs3 and infinite corridor, the search space for lazy evaluation is typically
orders of magnitude smaller than the exhaustive search. When lazy evaluation finds the correct
map, the tree stops growing entirely until new frontiers begin to be explored again. In contrast,
the exhaustive search tree continues growing because low-probability hypotheses continue to be
evaluated. The exhaustive search for eecs3 stops after 74 events because the system exhausted its
16GB of available RAM.

eventually dominate the posterior distribution. While the overall behavior of each algorithm
is similar, the performance differs in significant ways.

Our topological place representation uses the decision structure extracted from a met-
ric representation of the place. This representation describes exactly the number of paths
incident to a place, which limits the space of possible map hypotheses because a place
with all paths connected to places will no longer be a candidate for loop closures. Addi-
tionally, the configuration of incident paths can identify inconsistent map hypotheses by
assigning a probability of zero to hypotheses with different transition cycles 6.3.1. Only
these hypotheses are pruned from the tree of maps.

Tully et al. [17] use a similar place representation to our own that is based on junction
points in the Voronoi diagram. They also perform their search on a tree of maps annotated
with posterior probabilities. However, their algorithm actively prunes low-probability hy-
potheses in addition to inconsistent hypotheses, which means the correct hypotheses could
be pruned from the tree, making the correct map unrecoverable. By always expanding
all hypotheses, the number of hypotheses can grow very large during times of ambiguity.
As shown in their results, the maximum number of hypotheses grows into the thousands,
whereas our approach never considers more than 250 hypotheses in our experiments.

The place representation used in [8] treats each place as a simple landmark with no in-
formation about the number of incident paths. As a result, each place can match any other

90

place. When combined with their data-driven proposal, which requires a per-particle op-
timization across all possible matching landmarks, this simple place representation causes
significant slowdown. For the Infinite Corridor dataset, they required an average of 13.2s

per observed landmark, which totals 805s for their 61 observed landmarks. Our lazy evalu-
ation approach required 34.8s to process the entire map. While the difference in processing
power makes a direct comparison difficult, our algorithm runs over 20 times faster, which
cannot be accounted for solely by increased computing power.

6.7 Discussion

We have a demonstrated a probabilistic topological mapping algorithm that effectively re-
duces the search space of potential map hypotheses to allow topological mapping in real-
time while never eliminating the correct map from the search space. Our algorithm uses
a lazy evaluation approach to only expand the most probable map hypotheses based on
current sensor data. By focusing our search on only the most probable hypotheses, we
have shown the size of the search space grows significantly slower than a naive exhaustive
search, making topological mapping of large-scale environments feasible without enforcing
planarity constraints [89], active exploration [16, 22, 15, 88], or formal reasoning [91, 11].

Like previous approaches [17, 8], lazy evaluation focuses on a small set of highly prob-
able map hypotheses to make the topological mapping problem tractable. However, both
of these approaches prune the hypothesis space by either sampling only a small number of
map hypotheses [8] or explicitly discarding low-probability hypotheses [17]. As a result,
the correct map hypothesis can be discarded from the search space and never be retrieved.

Tully et al. [9] address the problem of discarding by adding a garbage-collector hypoth-
esis to their set of hypotheses that maintains an estimate of the total probability of discarded
hypotheses. While they are able to detect kidnapped robot situations and trigger a global
localization process, they provide no explanation for how the correct map hypothesis could
be retrieved, given the same sensor inputs.

In our approach, consistent map hypotheses are never discarded from the search space.
The lazy evaluation framework simply ignores low probability maps and allows different
maps to be maintained at different depths of the tree of maps, thus we can guarantee the cor-
rect map is always in the search space. Of course, extremely poor measurements can make
the correct map very improbable, but this problem is general to all mapping algorithms.

Maintaining map hypotheses at different depths of the tree requires additional storage,
since all place detection events must be maintained. This required storage space is negli-
gible though and consists of only an occupancy grid representation of the area, a λ-value,

91

and the symbolic description of the area (transition sequences or transition cycles).
Finally, we note interesting behavior in the exhaustive search results (Figure 6.6). While

the hypothesis space for naive landmark maps grows hyper-exponentially as a function of
the number of landmarks, a structural topological map, like the H2SSH, exhibits much
more complex behavior. While a general exponential increase is seen in both eecs3 and
infinite corridor, there are also periods where the number of hypotheses decreases signif-
icantly, particularly in the Infinite Corridor, where the number of consistent hypotheses
drops briefly below 1000 after 130 events. We believe the cause of this drop to be the
prevalence of T intersections in this environment. T intersections place more constraints
on the possible topologies in the environment, as opposed to plus intersections, which pro-
vide a wealth of loop closures, as can be seen in the EECS environment where over 85,000
hypotheses exist after just 73 events.

92

CHAPTER 7

Socially-Aware Navigation Using Topological
Maps and Social Norm Learning

In this chapter, we present a method for learning and following social norms using an
H2SSH representation of the environment. We show how the H2SSH simplifies pedes-
trian intention estimation by providing a small set of possible action classes. Using the
estimated intentions, we create a qualitative representation of the current navigation situ-
ation, which provides two distinct benefits. First, social norms for large-scale navigation
through an environment can be easily learned by simply counting the observed behavior
instances in each situation. Second, the behaviors we learn are conditioned only on the
generic topological action taken, i.e. moving down a corridor or from one place to another.
Thus, learned norms generalize to any environment with the same topological abstractions,
allowing the robot to behave appropriately in previously unvisited environments. We have
implemented the social norm learning on our intelligent robotic wheelchair, Vulcan [92],
and have integrated preferences based on social norms into a stochastic motion planner for
dynamic environments [93], allowing our wheelchair to move naturally through everyday
environments.

7.1 Social Norms for Navigation

Robot navigation in real-world environments, typified by college campuses, shopping malls,
hospital complexes, and office buildings, requires interaction with other moving agents,
most often pedestrians. To navigate safely and naturally in such environments, a robot
must reason about the behaviors of these pedestrians. In particular, the robot needs to esti-
mate the current and future positions of pedestrians when planning and executing its own
trajectory through the world to ensure safe motion.

While pedestrians have few physical constraints on their motion, pedestrian behavior is
often dictated by social norms that prescribe preferred behaviors for an agent to perform

93

in a particular social situation [50]. For a robot navigating in an indoor environment, so-
cial norms define preferences for how the robot should move through its environment and
interact with the agents it encounters, e.g. what side of a hallway to travel on, how far to
follow behind someone, or what an appropriate passing distance is [51, 49, 55]. In contrast
to standard approaches that optimize the safety and efficiency of the robot’s motion, a more
socially aware robot additionally considers adherence to social norms in deciding the best
trajectory to follow.

By understanding social norms, the robot can better understand how pedestrians are
likely to move through the environment, which enables more natural interactions. Over
time, a robot can refine its own behavior to more closely align with how a person would be
expected to act when faced with a similar situation.

In this paper, we focus on social norms for navigation in structured environments, where
the robot has both a metric and topological map of its environment. For a robot moving
through such environments, social norms prescribe behaviors for different situations the
robot encounters. For example, while traveling along a corridor, the robot should generally
stay to the right and pass on the left, or when turning at an intersection, the robot should
not cut the corners when making left turns, which increases the chance of a collision with
a pedestrian following the norm of moving on the right.

However, the space of possible situations the robot must react to is vast, and situations
with different social norms can arise for myriad reasons. For example, the robot might be
in a country that moves along the opposite side of corridors than the country in which it
was programmed. Consequently, a robot must learn the social norms for its environment
by observing other agents’ behaviors.

Learning social norms for different situations requires an understanding of the follow-
ing concepts: the robot must understand an agent’s intention, the robot must be able to
describe the situation the agent faces, and the robot must be able to describe the behavior
taken by the agent. We present a solution to these inter-related problems by creating a qual-
itative representation of social interactions using metric and topological representations of
an agent’s intentions and behavior.

Our method describes a situation using the topological actions being taken by all agents
in the environment, which creates a qualitative description of the situation around the robot.
This qualitative description can be easily estimated using a laser- or camera-based pedes-
trian tracker. In a metric map, the action taken by a pedestrian can be described by its
position and velocity. Using these state estimates, we perform Bayesian inference to es-
timate the topological action being taken by an agent. Along a corridor, these actions
correspond to moving from one end to the other. At a place or intersection, an agent is

94

selecting amongst a small set of adjacent places to move to next. Having created this de-
scription, social norms can then be learned by accumulating evidence about the behavior
of other agents in response to a situation.

We have implemented a socially-aware navigation algorithm by integrating knowledge
of social norms and goals into our existing motion planning algorithm, MPEPC, that plans
locally smooth and safe trajectories within a five-second horizon, balancing progress to-
wards its goal against the probability of collisions with static or dynamic obstacles in the
environment [20, 93]. We introduce the social norms as an additional cost layer for the
robot to consider when computing the navigation function to reach its goal, making the
robot prefer to follow them whenever it is safe to do so.

The remainder of this chapter proceeds as follows. Section 7.2 defines our navigation
situation abstraction that is the basis for our approach to learning social norms. Section 7.3
describes our approach for estimating the probability distribution across all topological ac-
tions in an area. Section 7.4 presents our method for learning social norms. Section 7.5
describes our socially-aware motion planning algorithm based on MPEPC. Finally, we eval-
uate the full system implemented on a robotic wheelchair in Section 7.6. Appendix B
contains a detailed description of the object tracker used by the methods presented in this
chapter.

7.2 Situations for Topological Navigation

As previously discussed (Section 4.6), navigation through the H2SSH can be described
using two actions: traveling along a path or transitioning from one area to another. When
traveling along a path, an agent moves towards the place at one of the ends, which we refer
to as p+ or p−. When transitioning between areas, an agent crosses a gateway g separating
them.

When executing these actions, an agent may encounter crowded intersections or empty
hallways. It might need to give way to an oncoming pedestrian or follow a pedestrian
through a corridor. We formalize these different interaction scenarios, including the possi-
bility of an empty environment, using the concept of a situation.

A situation, St = 〈M,Xt, Ot, αt〉, describes the robot’s navigation in terms of the
environment’s topological and metric map M , the robot’s current pose and topological
location Xt, the observed pedestrians Ot near the robot, and the current topological action
being executed αt ∈ {Ψ,∆}, where Ψ is a path travel action and ∆ is a transition action.

We describe each pedestrian’s state o ∈ Ot based on the set of possible actions for its
topological location. For a motion along a path (α = Ψ), a pedestrian is either moving

95

Figure 7.1: A variety of situations encountered by the robot (green rectangle). Pedestrians and their
predicted trajectories are the purple circles, spaced 1s apart in time. The situation states are drawn
as: green = empty, red = oncoming,yellow = away,blue = stationary.

towards the place at one of the ends, which we refer to as p+ or p−, depending on whether
the pedestrian is moving in the same (+) or opposite (−) direction as the agent, or is
stationary . When transitioning to a new area (α = ∆), the pedestrian is either crossing in
the same (g+) or opposite (g−) direction as the agent.

7.3 Topological Intention Estimation

Predicting an agent’s intentions presents a problem similar to predicting its future trajectory,
namely there exists a vast space of possible intentions for an agent at any time. However,
we can dramatically simplify the space of possible goals using a topological map. In the
H2SSH, performing a navigation action amounts to crossing one of the gateways in the
agent’s current area. Thus, intention estimation reduces to the task of estimating which
gateway an agent will use to leave its current area. We show how the Bayesian Human
Motion Intentionality Prediction (BHMIP) algorithm from Ferrer et al. [94] can be adapted
to estimating which the current gateway goal of an agent.

Given the estimated state ok of an agent and a set of goals Gk = {g0
k, . . . , g

N
k }, we

estimate a probability for each possible goal p(gnk |o0...k,Mk) : n ∈ {1 . . . N}. o0...k is the
set of all state estimates since the agent was detected in the area, and Mk is the topological
representation of the area. For each goal g ∈ G, we estimate the probability p(gk|o0...k,Mk)

by making the Markov assumption and using a recursive Bayes filter:

p(gk|o0...k,Mk) ∝
p(ok|gk,Mk)p(gk|ok−1,Mk)∑N
n=0 p(ok|gnk ,Mk)p(gnk |ok−1,Mk)

(7.1)

96

We assume an uniform prior across all goals p(gk|o0,Mk) = 1/(N + 1) for the initial
state. For a robot operating in a single environment, extended observation of pedestrian
behaviors can be used to estimate a non-uniform prior based on the frequency with which
gateways are traversed. We save such estimation for future work. Gk describes the com-
plete set of topological actions in the environment, allowing for a simple sum of probabili-
ties to be used for normalization.

When computing the likelihood of a particular goal, the primary consideration is the
estimated heading of the agent because the heading is the best estimate of where the agent
will be in the future. In this paper, we estimate heading from motion because our laser-
based system can’t perceive details of body positioning. Additional sensors, particularly
cameras, could provide additional information to further improve the heading estimate.

Using motion estimates (vx, vy) from a tracking algorithm, we can estimate a probabil-
ity distribution for the agent’s heading:

p(Θ) = N (θ;µθ, σ
2
θ) (7.2)

µθ = atan2(vy, vx) (7.3)

σ2
θ = JTθ

(
σ2
vx

σ2
vy

)
Jθ (7.4)

Jθ =
(
−vy
v2
x+v2

y
, vx
v2
x+v2

y

)T
(7.5)

To estimate the likelihood of the agent having a particular goal using this model, we
compute the range of headings that would result in the robot crossing the gateway associ-
ated with a goal, as shown in Figure 7.2.

Each gateway can be described as a line segment with two endpoints (xg, yg) and
(x′g, y

′
g). Using these endpoints, we can find the range of angles subtended by the gate-

way in the agent’s frame, whose origin is (xk, yk, µθ):

θg = atan2(yg − yk, xg − xk)− µθ (7.6)

θ′g = atan2(y′g − yk, x′g − xk)− µθ (7.7)

where both θg and θ′g are wrapped to the range [−π, π]. Given the subtended angle [θg, θ
′
g],

where |θg| < |θ′g|:

p(xk|g,Mk) = P (θ′g < Θ < θg)

= P (Θ < θg)− P (Θ < θ′g) (7.8)

97

(a) (b)

Figure 7.2: (a) shows the angle subtended by gateway g relative to the the agent, drawn as a circle
with the arrow indicating its heading. The blue cone on the right shows the estimated heading µθ
and along with a 1σ bound. In this case, θ and θ′ are on the same side of the dashed wraparound line.
The other possible scenario is shown in (b), where θ and θ′ are on opposite sides of the wraparound
at π.

When computing (7.2), we assume the agent will turn the smallest amount needed to
reach its goal. Thus, the magnitude of the rotation falls in the range [−π, π], where negative
angles are right turns and positive angles are left turns. Figure 7.2a shows the case when
the range of angles subtended by the gateway is only positive or negative . However, in the
case that [θg, θ

′
g] spans across the wraparound angle at π, the agent can turn right or left in

order to reach g (Figure 7.2b). For this case, (7.8) becomes:

p(xk|g,Mk) = P (π < Θ < θg) + P (π < Θ < θ′g)

= P (Θ < θg) + P (Θ < θ′g)− 2P (Θ < π) (7.9)

7.4 Learning Navigation Social Norms

A social norm describes the expected behavior of an agent in the environment when faced
with a social situation. However, social norms are loosely defined, so a variety of people
following the same social norm, like moving along the right side of a corridor, are likely
to exhibit a range of behaviors. To account for the variation in behaviors, we represent a
social norm as a probability distribution over possible behaviors, which can be learned by
observing how pedestrians behave when responding to various situations.

Formally, we learn probability distributions across possible robot poses x̄t, given a

98

(a) (b)

Figure 7.3: The evolution of goal probabilities using our intention estimation technique. (a) shows
the path taken by an agent. The colored triangles match the most probable goal at that location. (b)
is the plot of the goal probabilities for each goal as the agent moves through the intersection.

navigation situation St:

p(x̄t|St) = p(x̄t|M,Xt, Ot, αt) (7.10)

≈ p(x̄t|Ot, αt) (7.11)

We can approximate the complete distribution in (7.10), which depends on the robot’s loca-
tion Xt in a particular map M , using a more general situation description that depends only
on agent states Ot and the current action αt (7.11). By ignoring conditioning on the robot’s
specific state within a map, we learn a distribution that describes social norms for topologi-
cal actions in any environment, even previously unexplored environments. However, if the
robot continually operates within a single environment, (7.11) can be used as a prior for
learning the more complex distribution in (7.10), which allows the robot’s behavior within
known environments to be refined over time to account for local variations in how people
interact.

Our approach learns two related social norms. The first norm is a preference for the
robot’s lateral position while traveling longitudinally along a path. The other norm de-
scribes where the robot should cross a gateway when transitioning from one area to another.
Therefore, x̄t in (7.10) describes either the robot’s position along the line orthogonal a path
segment’s axis or its position along a gateway boundary.

To ensure the learned model generalizes to new environments, we normalize x̄t to the
range [0, 1]. In this range, 0 is the location of the left wall relative to the nominal direction of
motion. Therefore, the left side of a corridor or gateway relative to the center has distance
in the range [0, 0.5) and the right side range is (0.5, 1].

99

We then divide x̄t into N bins of equal size. By discretizing the normalized range for
x̄t, (7.10) becomes a simple discrete distribution, whose entire state space can be easily
enumerated. We estimate the parameters of this distribution by observing other agents’
responses to situations in the environment, incrementing the bin that corresponds to their
position, and then normalizing over the total number of observations.

7.4.1 Learning Norms for Path Segments

When navigating a path segment, p(x̄t|Ot, αt = Ψ) is a distribution across the robot’s lat-
eral position along the path segment, where Ψ is the action that takes the robot from one end
of the path segment to the other. We estimate p(x̄t|Ot, αt = Ψ) by considering a simpler
case first, where we ignore other agents in the environment, thus estimating p(x̄t|αt = Ψ).

To estimate p(x̄t|αt = Ψ), we observe other agents in the environment. For agents
traveling through the environment, we can directly observe x̄t and count the number of in-
stances of their position being in a bin n ∈ x̄t. Dividing by the total number of observation
yields the probability distribution p(x̄t|αt = Ψ).

In the more general case, we must consider how agents interact with one another. While
the state for an agent’s action αt is simple, interactions amongst agents can be complex. In
our representation, each agent can be in one of N lateral positions with a state of + or −,
depending on their motion relative to the robot. For an environment with K objects, there
are (2N)K possible states.

Rather than attempting to directly learn a distribution across this potentially huge state
space, we create a simplified representation of the situation and learn a new distribution:

p(x̄t|Ot, αt = Ψ) ≈ p(x̄t|Lt, αt = Ψ) (7.12)

The simplified situation Lt divides the path segment laterally into L bins. Each bin has
one of four states: {+,−, x, ∅}, which indicates if that bin is empty (∅), is occupied by
an agent moving in the direction ({+,−}), or contains a stationary agent (x). With this
representation, a total of 4L possible situations exist.

To compute Lt, each bin l ∈ L is matched with the nearest agent occupying the lateral
position of the bin in the direction the robot is heading. The agent is considered stationary if
the velocity is under 0.25m/s, which accounts for noise in the velocity estimate. Otherwise,
the state is assigned to ({+,−}) based on the estimated goal of the agent, or (∅) if no object
occupies the bin.

When learning p(x̄t|Lt, αt), we can use the same basic counting approach as when
learning p(x̄t|αt). We create a description of the situation Lt for each pedestrian. In this de-

100

scription, the robot is included as an agent that can occupy one of the bins in Lt. However,
we must compute a different description of the situation Lt for each pedestrian because
they each have a different perspective.

7.4.2 Learning Norms for Transitions

Motion through from one area to another occurs by crossing the gateway between the areas.
The relevant position x̄t for this action is where to cross the gateway boundary. Like the
norm for path segments, we can learn this distribution by observing an agent’s position
whenever it crosses a gateway boundary.

As with path travel, we first learn the simplified distribution p(x̄t|αt = ∆) by ignoring
other agents. We use a simple discrete distribution to represent p(x̄t|αt = ∆), which
we estimate by measuring where each agent crosses a gateway in the environment and
incrementing that the count of that bin, then normalizing over all measurements.

The distribution p(x̄t|Ot, αt) represents more complex interactions amongst agents as
they move from one area to another via a gateway. For this distribution, we consider only
the subset of agents Pt ⊆ Ot whose estimated action is to move across a gateway in the
opposite of the robot:

p(x̄t|Ot, αt = ∆) ≈ p(x̄t|Pt, αt = ∆) (7.13)

For example, if the robot is entering a place through some gateway g, we consider
all agents who are leaving the place through that same gateway. We condition the social
distribution on |Pt|. Thus, we estimate the distributions for each value of |Pt| experienced
by the robot during training using the same counting approach as with p(x̄t|αt).

7.5 Socially-Aware MPEPC

MPEPC generates plans at a fixed time horizon TH with an update rate of 10Hz. Each
planning cycle computes the best robot trajectory for the next TH seconds which requires
estimating the future trajectory of all dynamic objects around the robot for the next TH
seconds as well. The best trajectory is computed by optimizing the progress towards the
goal, as defined by a navigation function, weighted by the probability of safe motion.

We integrate the above goal prediction and social norm behaviors with MPEPC to create
a new socially-aware MPEPC (SA-MPEPC) by defining a cost map for the learned norms
from Section 7.4 to integrate them into the navigation function used for defining progress
through the environment to bias the robot’s decision making towards obeying social norms.

101

(a) (b)

Figure 7.4: Examples of cost maps used to define the social norm navigation function. The cost
map in (a) is for the robot making a right turn from the horizontal corridor to the vertical corridor.
Note that the cost is different when navigating through the intersection because the cost is based on
the transition norm rather than the path norm. In (b), the cost map is for executing a left turn at the
same interaction. The high-cost and low-cost regions are reversed since the learned norm is to stay
to the right.

In the existing MPEPC implementation [93], the robot’s navigation function is com-
puted using the wavefront algorithm defined by Konolige [95]. The wavefront grows from
the goal position outward using 8-way connectivity. Each cell in free space contains the
distance to the goal, thereby defining a gradient that can be followed to reach the goal.
Walls are marked as infinite distance.

The navigation function used by MPEPC is computed using a combination of the dis-
tance to the goal and a cost function. In many applications, including MPEPC, cost is a
function of the distance to obstacles. By ensuring the navigation function is infinite in col-
lision states for the robot, the gradient of the navigation function will always lead the robot
on a collision-free path to the goal.

We integrate the learned social norms into MPEPC by introducing an additive social

cost into the cost function for computing the navigation function for each free cell in the
occupancy grid:

Ccell = Cobst + Csocial (7.14)

The cost associated with being near an obstacle Cobst is an exponential function of the
distance to the obstacle:

Cobst =

0 if dobst ≥ Dmax

α
(
Dmax−dobst

Dmax

)β
if dobst < Dmax

(7.15)

Both social norms in Section 7.4 are probability distributions over the robot’s lateral

102

position when moving along a path segment or across a gateway, where the robot should
prefer moving through high-probability regions. The cost of being in a particular position
is proportional to the learned probability of not being in a particular position:

Csocial =

k3/(1− p(dnorm|Pt, αt)) if αt = G

k3/(1− p(dnorm|Lt, αt)) if αt = Ψ
(7.16)

where σ is an adjustable weight.
In our implementation, we use the Voronoi skeleton to compute dnorm. There are typ-

ically multiple branches of the Voronoi skeleton. We select the branches of interest by
finding the shortest path along the skeleton between the entry and exit gateways. Only the
skeleton cells along this shortest path are used for computing dnorm.

The normalized distance relative to the left wall for a cell in the map is dnorm =

dobst/(2dskel) when the skeleton is to the right of the cell. When the skeleton is to the
left of the cell, dnorm = 1− (dobst/2dskel). Here dobst is the distance to the nearest obstacle
and dskel as the distance of the nearest Voronoi skeleton cell to an obstacle.

Examples of the cost maps generated by (7.14) are shown in Figure 7.4. Using such a
cost map, a 2D navigation function can be computed using the wavefront algorithm. When
computing the wavefront, we initialize the goal from which the wavefront emanates to be
the entire gateway boundary, rather than a specific point. Doing so ensures that the gradient
of the navigation function will lead the robot across the gateway boundary, regardless of
where it reaches it, as opposed to forcing it across at a single point, which isn’t necessary
for topological navigation.

7.6 Experimental Methods and Results

The goal of our socially-aware navigation algorithm is to enable the robot to learn how
to behave in different social navigation situations, thereby improving its interactions with
pedestrians to allow more socially acceptable and safer motion through the environment.

To test the effectiveness of our algorithm, we have implemented the socially-aware
MPEPC algorithm on our robotic wheelchair, Vulcan [92]. Vulcan is equipped with two
Hokuyo URG-30LX lasers, an IMU, and wheel encoders. The software runs on a standard
laptop with an Intel i7-4800MQ processor and 8GB of memory.

We learned the distributions in (7.12) and (7.13) using training data collected by Vulcan
during autonomous explorations of campus buildings at the University of Michigan. While
exploring, Vulcan was controlled using the MPEPC algorithm described in [93].

103

Figure 7.5: The test environment used for evaluation. The trajectories generated by SA-MPEPC
are orange. The MPEPC trajectories are blue. For all trajectories, the robot was moving clockwise
around the left loop and counter-clockwise around the right loop. During navigation, the robot was
commanded to drive to the center of each intersection. Once within 10m, it would switch to the next
target. The right-bias of SA-MPEPC is clear along the hallways. The preference for taking wider
left turns and tighter right turns can be seen in the top left and top center intersections. This figure
is best viewed in color and magnified.

To evaluate the effectiveness of our new approach, we compare the performance of
SA-MPEPC against the previous MPEPC algorithm. For this evaluation, we performed
approximately 90 minutes of autonomous circuits with each algorithm around the figure-
8 loop shown in Figure 7.5. These circuits were performed at varying times of day, so
the robot would encounter a more varied set of social situations and pedestrians. During
autonomous navigation, the robot’s pose and velocity were estimated at 50Hz, and the
position and velocity of pedestrians were estimated at 20Hz using only the onboard laser
sensors.

No volunteers were used as pedestrians, so all robot-human interactions were with peo-
ple carrying out their daily activities unaware of the experiment being performed. To ensure
the safety of others, Vulcan was operated during all experiments by one of the authors who
would manually intervene if unsafe conditions were detected.

7.6.1 Lateral Position During Navigation

In our approach, preferences for behavior influenced by social norms are learned as proba-
bility distributions over the agent’s lateral position. Lateral position represented using the

104

(a) (b)

Figure 7.6: The distributions over the normalized lateral position of the robot show a clear shift to
the right for both paths (a) and transitions (b).

(a) (b)

Figure 7.7: The observed agent positions also see a shift to the right, though the effect is less
dramatic.

normalized distance from the left wall, with a distance of 0 being the agent touching the
left wall and a distance of 1 touching the right wall. Since the test was performed in the
US, the robot successfully learning and following social norms will be demonstrated by a
significant increase (closer to 1) in the normalized lateral position of the robot.

The results of our experiment demonstrate a clear rightward shift in the robot’s position
while traveling along a path and across transitions, as can be seen in Figure 7.6. We com-
pared Gaussian distributions computed from the experimental data (Table 7.1) and found
a significant difference between MPEPC and SA-MPEPC (p < .001, t = 349) support-
ing the hypothesis that a robot controlled by SA-MPEPC travels along paths closer to the
right wall. Similarly, comparing Gaussian distributions for the lateral position when transi-
tioning between areas, we found a significant difference between SA-MPEPC and MPEPC
(p < .001, t = 41.9).

In our experiment, we also explored how the robot’s adherence to social norms affects

105

Table 7.1: Distribution of normalized distance for the robot and observed agents.

SA-MPEPC MPEPC p-value

Robot Path 0.66 ± 0.02 0.48 ± 0.03 < .001

Robot Transition 0.61 ± 0.03 0.49 ± 0.05 < .001

Pedestrian Path 0.62 ± 0.08 0.55 ± 0.09 < .001

Pedestrian Transition 0.58 ± 0.08 0.57 ± 0.07 < .3

the behavior of other agents in the environment.
We hypothesize that the robot’s more normative behavior improves the adherence to

norms of agents the robot interacts with. Table 7.1 shows a significant rightward shift in
the lateral position of observed agents traveling along paths (p < .001, t = 19.35). The
shift in the mean of 0.07 corresponds to 0.15 − 0.2m in the test environment, depending
on the corridor. We do not, however, find a significant difference in the lateral position of
transitions between the two approaches (p < .3, t = 0.6745).

7.6.2 Oncoming Pedestrian Avoidance Behavior

In addition to lateral positioning while navigating, we explored the behavior of SA-MPEPC
when faced with another common scenario: passing an oncoming pedestrian moving the
opposite direction along a corridor. During our experiment, we performed 42 oncoming
passes with MPEPC and 61 oncoming passes with SA-MPEPC.

To assess the safety of the passing behavior, we looked at the passing distance be-
tween the robot and the oncoming pedestrians. We found no significant difference (p < .4,
t = 0.372) between the average passing distance of 0.52m for SA-MPEPC versus 0.50m

for MPEPC. This behavior is expected because MPEPC does not rely on the navigation
function to ensure the safety of the vehicle because progress towards the goal is weighted
the probability of collision with pedestrians. Therefore, safe distances are determined by
the uncertainty of the robot’s perception of the environment, along with encoded prefer-
ences on passing distances, which do not change between SA-MPEPC and MPEPC.

While the passing distance is similar, the qualitative behavior (pass on the left or the
right) of SA-MPEPC does show improved conformance to passing norms. In the US, the
expected behavior is for each agent to stay to the right, so an oncoming pedestrian will be
to the left when passing. We found a significant increase (p < .001, z = 3.421) in the

106

Table 7.2: Comparison of oncoming passing behaviors.

SA-MPEPC MPEPC p-value

Count 61 42

Distance (m) 0.52 ± 0.22 0.50 ± 0.24 < .4

% Left 88.5 59.5 < .001

(a) MPEPC (b) SA-MPEPC

Figure 7.8: 2D histograms encoding the number of robot-pedestrian interactions at each combina-
tion of normalized lateral positions of the pedestrian (x) and robot (y). SA-MPEPC has a dominant
peak in the lower right corner, corresponding to both the pedestrian and robot being on their own
right sides of the corridor. In contrast, MPEPC has a much weaker peak in the bottom right corner
and more interactions with a left-side robot and right-side pedestrian (top right) or a left-side robot
and left-side pedestrian (top left).

percent of time SA-MPEPC passes an oncoming pedestrian on their left.
This improvement in passing behavior comes from the preference to stay to the right.

Often, the robot is already moving to the right, so an oncoming pedestrian, also moving on
their right, can simply pass the robot with no deviation from the trajectory. In more complex
situations, where the robot is not moving along the right side of the corridor, perhaps due
to clutter or other pedestrians, the learned norm encodes a preference to move right. As a
result, the gradient in the navigation function will bias the robot to move right to avoid the
collision.

107

7.7 Discussion

A robot operating as a part of society should adhere to the cultural norms and behaviors of
that society. For mobile service robots, these social norms include how one should travel
along corridors and through intersections – namely to bias motion to one side to avoid
interfering with people moving the opposite direction and to allow room for faster moving
people to safely pass. In this chapter, we have shown how our robotic wheelchair, Vulcan,
uses the hybrid topological-metric representation of the H2SSH to learn social norms for
large-scale navigation in the environment.

Our topological situation abstraction allows potentially complex navigation scenarios
to be tractably represented. The robot can then learn from observation how people in the
environment react in these scenarios to learn preferences for its own behavior. In particular,
we have shown that the robot is able to recognize biases in the lateral position of pedestrians
in the environment and incorporate those biases into its own motion.

We integrated the learned social norms into our existing MPEPC algorithm [20, 93]
to create socially-aware MPEPC (SA-MPEPC). The knowledge of social norms is imple-
mented using an additional cost map when computing the navigation function that defines
the optimal route through the environment. This approach ensures that social norms for
navigation are followed even when the robot is moving through an otherwise empty envi-
ronment.

Our results demonstrate that SA-MPEPC generates improved normative behavior com-
pared to the baseline MPEPC algorithm, which optimizes only for safety and efficiency.
The right-ward bias observed by Vulcan is integrated into its motion preferences, result-
ing in Vulcan staying to the right when traveling along paths and transitioning between
areas Figure 7.5. By staying to the right, Vulcan has improved interactions with oncoming
pedestrians, demonstrating the appropriate passing behavior with far greater frequency.

Our results show that Vulcan’s improved adherence to social norms also increases the
adherence of other pedestrians to those same norms, demonstrating the mutually-reinforcing
nature of these norms. During testing, we observed many instances with SA-MPEPC where
neither Vulcan nor an oncoming pedestrian was forced to slow down, since their preferred
trajectories in the environment were collision-free. With MPEPC though, we observed
many more instances of a collision avoidance dance, where Vulcan was on a collision
course with a pedestrian and both Vulcan and the pedestrian attempted to avoid the colli-
sion in the same direction.

Finally, we note the importance of learning and following social norms that extend
beyond the close human-robot interaction scenarios, like passing behaviors or approach

108

distances, that have been the focus of research (see [48] for an extensive review). Human-
robot interaction occurs in other situations, as well. For example, a robot moving through
the environment will be noticed even by people outside its interaction range, and more
importantly, service robots like telepresence robots and intelligent wheelchairs are directly
interacting with the person using them at all times. In these scenarios, adherence to social
norms will directly impact people’s comfort and trust with the robot. Thus, we believe
widespread deployment of any robot will need to integrate knowledge of these norms to
gain the acceptance of humans in their environment.

109

CHAPTER 8

Discussion

8.1 Conclusion

We presented the Hierarchical Hybrid Spatial Semantic Hierarchy (H2SSH), a hybrid topological-
metric map representation, capable of providing scalable representations of both small and
large structures in the world, by providing natural descriptions of a hallway lined with of-
fices as well as a cluster of buildings on a college campus. By considering the affordances
in the environment, we identify a division of space into three distinct classes: path seg-
ments afford travel between places at their ends, decision points present a choice amongst
incident path segments, and destinations typically exist at the start and end of routes.

Construction of the H2SSH map required a new approach for place classification and
detection. The approach used in the HSSH by Beeson et al.[11] only detected decision
points in a small, scrolling LPM. Other place classification approaches provided no means
to guarantee the resulting places and path segment satisfied the constraints of the H2SSH
required for construction of the global topological map. We solved this problem by em-
ploying a novel algorithm the combined loopy belief propagation with Markov chain Monte
Carlo (MCMC) sampling to find consistent and highly probable place labels.

Because we evaluated our algorithm on a much wider variety of environments (17 dif-
ferent maps in total), we conducted an experiment where eight human participants created
ground-truth maps of six different environments. While more extensive experimentation is
needed, our initial results suggest that semantic understanding of the environment is varies,
sometimes significantly, from person to person. For example, one participant placed a de-
cision point in front of every office door along a corridor, like the HSSH, whereas all others
treated them as adjacent to the path segment, like the H2SSH. These preliminary findings
point towards the need for a more comprehensive and rigorous means of evaluating ap-
proaches to semantic mapping.

Using the detected places, our probabilistic topological mapping algorithm uses lazy

110

evaluation to perform real-time topological mapping by efficiently maintaining and ex-
panding a probabilistic tree of maps. Unlike previous approaches [17, 8, 9], our algorithm
does not prune consistent map hypotheses to avoid exponential growth. The best guaran-
tee that other approaches can make is that the algorithm can detect if the correct map was
probably discarded [9]. Because we do not prune consistent hypotheses, ours is the only
approach that can guarantee the correct map is always in the search space, though suffi-
ciently poor sensor measurements can result in the correct map not being probable enough
to be found.

Our evaluation shows that, in addition to not aggressively pruning the search space,
lazy evaluation also outperforms other approaches. Even when subjected to large loop clo-
sures in the Infinite Corridor dataset, our algorithm expands at most 250 hypotheses on an
update, whereas Tully et al. [17] generate thousands of hypotheses in uncertain situations.
The Rao-Blackwellized particle filtering approach of Ranganathan and Dellaert [8] uses a
simple landmark-based representation which results in many more possible loop closures,
even when sampling from a particle filter. Our lazy evaluation algorithm runs an order of
magnitude faster on the well-known Infinite Corridor dataset.

After creating an H2SSH abstraction of the environment, we use the global topological
map and the local semantic labels for navigation, planning routes in the topological map and
performing motion planning in the LPM. We extend our previous work, MPEPC [20, 93],
by integrating knowledge of social norms learned by observing pedestrians in the robot’s
environment.

We abstract the dynamic interactions with pedestrians around the robot into simple
discrete representation, we call situations. Situations allow the potentially complex inter-
actions encountered by the robot to be described qualitatively, like person approaching on
the left or two people moving away on the right. Identifying these situations is simple and
learning how people respond requires only counting instances of their observed behavior.

We implemented our improved, socially-aware motion planner SA-MPEPC on our
robot wheelchair, Vulcan [92] using an additional cost map that to encodes the learned
responses to the situations faced during navigation. These costs are integrated into the nav-
igation function that defines the progress metric used by MPEPC. By integrating the social
awareness into the underlying navigation function, the robot’s behavior exhibits following
social norms, like staying to the right, even in the absence of pedestrians.

Our results demonstrate that SA-MPEPC generates behavior that improves adheres to
social norms compared to the baseline MPEPC algorithm, which optimizes only for safety
and efficiency. The rightward bias observed by Vulcan is integrated into its motion pref-
erences, resulting in Vulcan staying to the right when traveling along paths and transi-

111

tioning between areas Figure 7.5. By staying to the right, Vulcan has improved interac-
tions with oncoming pedestrians, demonstrating the appropriate passing behavior with far
greater frequency. Additionally, our results show that Vulcan’s more normative behavior
also increases the adherence of other pedestrians to those same norms, demonstrating the
mutually-reinforcing nature of social norms.

8.2 Future Work

8.2.1 Robust Topological Mapping

Our lazy evaluation algorithm is capable of performing topological SLAM in large envi-
ronments, finding the correct map amongst the thousands of possibilities. However, our
algorithm currently requires the sequence of topological events to be perfect, meaning that
all topologically-significant places are detected and only topologically-significant places
are detected. That is, there are no false positives and no false negatives. While we can
still use our approach to build topological maps, long-term autonomy will require a more
robust approach that can handle the occasional and inevitable changes and failures of the
place detection algorithm.

Our probabilistic framework is well-suited to addressing this problem. First, we can
incorporate a data-driven proposal [8] to lazily expand child hypotheses in the tree of maps,
as opposed to our current approach which always fully evaluates all child hypotheses. Once
we have reduced the number of map hypotheses generated under nominal conditions, we
can introduce new hypotheses that take into consideration the possibility that either false
negative or false positive place detections occurred.

The potential for many more hypotheses will also require a more advanced likelihood
model for map hypotheses. We plan to integrate laser- and vision-based place models to
improve the ability of our lazy evaluation to focus on only high-probability portions of the
hypothesis space.

8.2.2 Region-based Hierarchical Mapping

So far, we addressed the problem of scalability in topological mapping by reducing the
size of the hypothesis space by using a hierarchical representation for paths (Chapter 4)
and by efficiently searching only the most probable portions of the space of possible maps
(Chapter 6). This approach works well for a multi-building environments connected on a
single floor. However, campus-scale environments can easily span hundreds of floors and

112

tens of thousands of places [96].
The H2SSH can represent these massive environments by constructing topological maps

in which some destinations are themselves large-scale topological maps 3.5.2. This re-
cursive representation allows for an arbitrarily deep hierarchy of regions to be mapped.
Creating a hierarchy of regions allows the algorithm to scale using the classic approach
of divide-and-conquer. Rather than mapping an environment with N places, we map in-
dependent regions with N/2 places and combine the results. For the topological mapping
problem, whose complexity grows exponentially in the worst case, even reducing the size
by half can be the difference between a tractable and intractable problem. Increasing the
depth and breadth of the hierarchy further improves the scalability.

We plan to integrate these hierarchical regions to map a large environment with multiple
buildings and floors of buildings connected via elevators. By detecting when the robot
changes floors using an elevator, we can segment the environment into multiple regions
and avoid the difficult problem of detecting regions based on their appearance. Since many
environments have similar elevator connections, this approach will generalize to a large
class of environments.

8.2.3 Predicting Pedestrian Collision Zones

Safe motion through the environment requires knowing where obstacles are and the behav-
ior of other agents. The social norms learned in Section 7.4 improve safety by encoding
probability distributions across possible behaviors for the robot to take, given a situation S.
However, these models require the robot to have complete knowledge of S, which is often
not possible when the robot’s field-of-view is limited by static and dynamic objects.

We can use the learned norms to infer the probability of being in a particular situa-
tion given partial knowledge due to obstacles blocking the part of the robot’s field-of-view.
Specifically, while moving down a corridor, the robot can infer the probability of an oncom-
ing pedestrian being in a blind spot by marginalizing over the state of observable pedes-
trians. This inference allows the robot to operate more safely in real-world environments,
where the robot’s knowledge of the world is always incomplete. And while this inference
may possible with other approaches, our state space makes the computation extremely fast
and easy.

Rather than optimistically assuming no agents exist in the robot’s blind spots, we can
use the learned social norms and gateways in the topological map to infer where pedestrians
are likely to be. We will consider two cases analogous to the two classes of situations
addressed by our current method: the probability that there’s an oncoming pedestrian in the

113

robot’s blind spot while moving along a path segment, and the probability of a pedestrian
appearing in the robot’s local environment by crossing a gateway.

When traveling along a hallway, the robot’s view can be partially obscured by other
agents moving through the environment. As a result, the robot may not be able to safely
pass pedestrians moving slowly in front of it. Rather than being forced to move slowly by
never passing or dangerously by always passing, we can use the learned norm in (7.12) and
an observation of the current location of pedestrians to predict where oncoming pedestrians
may be to make a more reasoned decision.

Within the topological map, agents move from one area to another via gateways. Thus,
a new agent appears in the robot’s field-of-view either because the robot moved such that
the agent became visible or the agent moved into the field-of-view while moving towards or
across a gateway. The norm learned in Section 7.4.2 defines a probability distribution over
where pedestrians cross gateways. This distribution and an analysis of the visible portion
of the environment therefore provides a straightforward means of estimating where new
pedestrians might appear.

114

APPENDIX A

Ground-truth Labeled Maps

A.1 Place Labeling Results

In this section, we provide all ground-truth maps used for our evaluation. For each map,
we provide: (a) the ground-truth metric map from which semantic labels were extracted,
(b) the ground-truth labels used to generate our results, and (c) the semantic map produced
by our MCMC algorithm.

115

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.1: Maps used for evaluation of intel.

116

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.2: Maps used for evaluation of csail.

117

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.3: Maps used for evaluation of infinite corridor.

118

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.4: Maps used for evaluation of sdr.

119

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.5: Maps used for evaluation of abuilding.

120

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.6: Maps used for evaluation of aces3.

121

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.7: Maps used for evaluation of oregon.

122

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.8: Maps used for evaluation of seattle.

123

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.9: Maps used for evaluation of fr79.

124

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.10: Maps used for evaluation of bbb3.

125

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.11: Maps used for evaluation of bbbdow1.

126

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.12: Maps used for evaluation of eecs3.

127

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.13: Maps used for evaluation of ggb1.

128

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.14: Maps used for evaluation of ggb2.

129

(a) Metric map

(b) Ground-truth labels

(c) MCMC labels

Figure A.15: Maps used for evaluation of ggb3.

130

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.16: Maps used for evaluation of pierpont1.

131

(a) Metric map (b) Ground-truth labels

(c) MCMC labels

Figure A.17: Maps used for evaluation of tufts3.

132

A.2 Human Variability Results

The results for the human variability experiment are shown using two figures. The first
figure (a) shows the consensus amongst the different labelings. White indicates complete
agreement between all maps, while light gray is maximum disagreement (all classes with
the same number of votes), the grayscale value is set using Lmax − Lmin. Black areas
in the map are free space cells without a semantic label because they correspond to areas
on the other side of glass walls or errant beams during mapping. (b) shows what labels
were assigned by the human labelers. Each labeled map votes green (path segment), red
(destination), or blue (decision point) for each cell in the combined map. Thus, path seg-
ment/decision point ambiguity is teal, decision point/destination ambiguity is purple, and
path segment/destination ambiguity is brownish.

133

(a)

(b)

Figure A.18: Human variability results for bbb3.

134

(a)

(b)

Figure A.19: Human variability results for bbbdow1.

135

(a) (b)

Figure A.20: Human variability results for csail3.

136

(a)

(b)

Figure A.21: Human variability results for eecs3.

137

(a)

(b)

Figure A.22: Human variability results for intel.

138

(a)

(b)

Figure A.23: Human variability results for pierpont1.

139

APPENDIX B

Multi-laser Pedestrian Tracking

We model the robot’s environment as a tuple Et = 〈Mt,Ot〉. Mt is a metric map of the
static environment, either constructed a priori or being built concurrently with the object
tracking using an online SLAM algorithm. Ot = {o1, o2, ..., oK} are the dynamic objects
being tracked by the robot. Each object, ok = 〈x, y, vx, vy, ax, ay, S〉, is represented by
its position (x, y), velocity (vx, vy), and acceleration (ax, ay) in the x-y plane, and a shape
model, S.

At each timestep t, the input to the tracking algorithm is the robot’s pose xt, a collection
of objects, ZN

t , segmented from a laser scan, the environment map, Mt, and the previously
estimated objects Ot−1. The goal of the tracker is to estimate Ot.

We treat each moving object as independent and estimate each object’s state using a lin-
ear Kalman filter. The following sections detail the methods used for detecting objects in a
laser scan, building models of the detected objects, associating newly detected objects with
existing tracked objects, and the process and measurement models used for the Kalman
filter.

B.1 Object Detection and Modeling

For each update, we segment a laser scan, Lt, received at time t into a set of measured
objects ZN

t = {z0
t , z

1
t , ..., z

N
t }, where znt = 〈x, y,Σxy, P, S,ΣS〉, representing the estimated

position plus uncertainty (x, y,Σxy), the measured laser endpoints P , and a shape fit to the
laser endpoints plus uncertainty (S,ΣS).

Segmentation of the laser scan begins by splitting the laser measurements into a set of
measurements that can be explained by obstacles in the static environment map, Mt, and
those that fall into space estimated to be free in Mt. For example, in an occupancy grid
representation, those measurements whose endpoint lands in a cell with p(occ > 0.5) are
classified as static measurements, and measurements whose endpoint lands in a cell with

140

p(occ <= 0.5) are classified as moving.
Given the measurement classification, individual objects are identified by clustering

adjacent moving laser points whose difference in measured radial distance is less than
some threshold ∆Rmax. The output of the clustering process is N clusters of points
P 1, P 2, ..., PN . We use these point clusters to estimate the position and shape of the objects
measured by the laser scan.

The most straightforward way to calculate the position of an object is to use the mean
of the endpoints in the cluster. However, this approach estimate the true position only in
rare due to the functionality of the laser scan. As shown in Figure B.1, the laser scan can
never observe the full boundary of an object. Consequently, the mean endpoint point will
almost always underestimate the true distance to the object.

A more principled approach is to estimate the underlying shape of the object being
measured by the laser points, that is to find some shape S that minimizes the measurement
error between the shape boundary and the measured laser points. The shape S can take
many forms. We choose models that reasonably describe the most common moving objects
in the environment, like legs and carts. We calculate three models for each point cluster
and select the model with the lowest RMS error:

• A circle with radius in the range [Rmin, Rmax].

• Two circles with two radii (R1, R2), each in the range [Rmin, Rmax].

• A bounding rectangle.

For each model, we calculate the shape that minimizes the RMS error between the
shape boundary and the measured points. We use the circle-fitting algorithm created by
Chernov and Lesort [97]. The two-circle model splits the points into two disjoint sets that
minimize the total RMS error. The two-circle model accounts for cases where two legs
exist in the same point cluster.

For the bounding rectangle, we use a variation on the rotating calipers-based minimum
area bounding rectangle algorithm [98]. Instead of selecting the bounding rectangle with
the minimum area, we select the rectangle that minimizes the RMS error between the rect-
angle boundary and the measured points.

Once the shape of the object is calculated, the position of the object is taken to be the
center of the shape. Al-Sharadqah and Chernov [99] describe how uncertainty propagates
in the circle fitting algorithm we use. The uncertainty of the position and radius of the fitted
circle is a function of the angular spread of the measured points, The greater the maximum
angular difference between the points, the lower the uncertainty.

141

(a) (b)

Figure B.1: (a) shows the dynamic objects detected around the robot. The color indicates the
laser that detected the object on the robot. Green is the back laser and magenta is the front laser.
Individual legs can clearly be seen. A shape-fitting error results in one leg being estimated to be
a rectangle. (b) shows the estimated position of each object, along with the estimated velocity
vector and position covariance. For those objects with two detected legs, the position and velocity
are accurately measured to be the center of the line connecting the legs. For single leg cases, the
estimate is more uncertain (left side) or results in an incorrect velocity based on the center switching
from the center of two legs to the center of a single leg (top). Merging of the estimated from both
lasers can be seen in the upper right corner.

The uncertainty calculation in [99] uses the angle from the circle center to the measured
points for determining the amount of the circle boundary that was measured. We adapt this
approach for finding the uncertainty of the fitted rectangle by projected the measured points
onto the rectangle boundary. We use the angle from the center to the projected point for the
uncertainty calculation.

B.2 Data Association

We match each detected object znt ∈ ZN
t with a tracked object ok by considering the dis-

tance between Pznt and the boundary of each tracked object. We associate a detected object
with the closest tracked object if the distance is less than a certain threshold.

arg min
k

∑
P

dist(p, Sok) (B.1)

142

B.3 Constant-Acceleration State Estimation

We use a linear Kalman filter for estimating the state of each object. Below we describe
each component of the tracking filter. Because Kalman filter notation varies, we list the
Kalman filter equations in (B.2)-(B.6) for clarity. ut, which normally appears in (B.2), is
left out because the underlying action being taken by the object is unknown.

x̂k|k−1 = Fkx̂k−1|k−1 (B.2)

Pk|k−1 = FkPk−1|k−1F
T
k + Vk (B.3)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Wk)

−1 (B.4)

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (B.5)

Pk|k = (I −KkHk)Pk|k−1 (B.6)

Process Model Our process model, (B.7), for predicting the next object state uses the
classical equations of motion for an object moving with constant acceleration.

Fk =

1 0 δt 0 1
2
δ2
t 0

0 1 0 δt 0 1
2
δ2
t

0 0 1 0 δt 0

0 0 0 1 0 δt

0 0 0 0 1 0

0 0 0 0 0 1

(B.7)

where δt = tk − tk−1.
We use a constant zero-mean Gaussian process noise:

Vk = diag(σpos, σpos, σvel, σvel, σaccel, σaccel) (B.8)

Measurement Model In addition to the measured position in znt , we take the first and
second time derivatives of the recent history of position measurements to provide a mea-
surement of the object’s velocity and acceleration.

yk =
(
x y vx vy ax ay

)T
(B.9)

Because the measurement state is the same as the object state, Hk = I .

143

BIBLIOGRAPHY

[1] J. S. Gutmann, E. Eade, P. Fong, and M. E. Munich, “Vector Field SLAM : Local-
ization by learning the spatial variation of continuous signals,” IEEE Transactions on
Robotics, vol. 28, no. 3, pp. 650–667, 2012.

[2] E. Olson and P. Agarwal, “Inference on networks of mixtures for robust robot map-
ping,” International Journal of Robotics Research, vol. 32, no. 7, pp. 826–840, July
2013.

[3] M. Pfingsthorn and A. Birk, “Generalized graph SLAM: Solving local and global am-
biguities through multimodal and hyperedge constraints,” The International Journal
of Robotics Research, 2015.

[4] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose graph SLAM,”
in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, 2012, pp. 1879–1884.

[5] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard, “Robust map
optimization using dynamic covariance scaling,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on, 2013, pp. 62–69.

[6] M. Cummins and P. Newman, “Appearance-only SLAM at large scale with FAB-
MAP 2.0,” The International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–
1123, 2011.

[7] M. J. Milford and G. F. Wyeth, “SeqSLAM: Visual route-based navigation for sunny
summer days and stormy winter nights,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012, pp. 1643–1649.

[8] A. Ranganathan and F. Dellaert, “Online probabilistic topological mapping,” The In-
ternational Journal of Robotics Research, vol. 30, no. 6, pp. 755–771, 2011.

[9] S. Tully, G. Kantor, and H. Choset, “A unified bayesian framework for global local-
ization and SLAM in hybrid metric/topological maps,” The International Journal of
Robotics Research, vol. 31, no. 3, pp. 271–288, 2012.

[10] C. Johnson and B. Kuipers, “Efficient search for correct and useful topological maps,”
in IROS. IEEE, 2012, pp. 5277–5282.

144

[11] P. Beeson, J. Modayil, and B. Kuipers, “Factoring the mapping problem: Mobile robot
map-building in the hybrid spatial semantic hierarchy,” The International Journal of
Robotics Research, vol. 29, no. 4, pp. 428–459, 2010.

[12] O. M. Mozos, C. Stachniss, and W. Burgard, “Supervised learning of places from
range data using adaboost,” in ICRA. IEEE, 2005, pp. 1730–1735.

[13] S. Friedman, H. Pasula, and D. Fox, “Voronoi random fields: Extracting topological
structure of indoor environments via place labeling.” in IJCAI, vol. 7, 2007, pp. 2109–
2114.

[14] A. Ranganathan, E. Menegatti, and F. Dellaert, “Bayesian inference in the space of
topological maps,” IEEE Transactions on Robotics, vol. 22, no. 1, pp. 92–107, Feb
2006.

[15] D. Marinakis and G. Dudek, “Pure topological mapping in mobile robotics,” IEEE
Transactions on Robotics, vol. 26, no. 6, pp. 1051–1064, 2010.

[16] B. Kuipers and Y.-T. Byun, “A robust, qualitative method for robot spatial learning,”
in AAAI, 1988, pp. 774–779.

[17] S. Tully, G. Kantor, H. Choset, and F. Werner, “A multi-hypothesis topological SLAM
approach for loop closing on edge-ordered graphs,” in IROS, oct. 2009, pp. 4943 –
4948.

[18] K. Lynch, The Image of the City, ser. Harvard-MIT Joint Center for Urban Studies
Series. MIT Press, 1960.

[19] B. Kuipers, “Modeling spatial knowledge,” Cognitive Science, vol. 2, no. 2, pp. 129 –
153, 1978.

[20] J. J. Park, C. Johnson, and B. Kuipers, “Robot navigation with model predictive equi-
librium point control.” in IROS, 2012, pp. 4945–4952.

[21] B. Kuipers, “The spatial semantic hierarchy,” Artificial intelligence, vol. 119, no. 1,
pp. 191–233, 2000.

[22] H. Choset and K. Nagatani, “Topological simultaneous localization and mapping
SLAM: toward exact localization without explicit localization,” IEEE Transactions
on Robotics, vol. 17, no. 2, pp. 125–137, 2001.

[23] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration as graph con-
struction,” Robotics and Automation, IEEE Transactions on, vol. 7, no. 6, pp. 859
–865, dec 1991.

[24] Ö. Erkent and H. I. Bozma, “Bubble space and place representation in topological
maps,” The International Journal of Robotics Research, vol. 32, no. 6, pp. 672–689,
2013.

145

[25] A. Ranganathan and F. Dellaert, “Bayesian surprise and landmark detection,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on. IEEE,
2009, pp. 2017–2023.

[26] J. L. Blanco, J. A. Fernndez-Madrigal, and J. Gonzlez, “Toward a unified bayesian
approach to hybrid metric–topological slam,” IEEE Transactions on Robotics, vol. 24,
no. 2, pp. 259–270, April 2008.

[27] H. Karaoguz and H. I. Bozma, “Reliable topological place detection in bubble space,”
in Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2015, pp. 5462–5467.

[28] R. Goeddel and E. Olson, “Learning semantic place labels from occupancy grids us-
ing CNNs,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2016.

[29] L. Shi and S. Kodagoda, “Towards generalization of semi-supervised place classifi-
cation over generalized voronoi graph,” Robotics and Autonomous Systems, vol. 61,
no. 8, pp. 785 – 796, 2013.

[30] Y. Liao, S. Kodagoda, Y. Wang, L. Shi, and Y. Liu, “Place classification with a graph
regularized deep neural network,” IEEE Transactions on Cognitive and Developmen-
tal Systems, vol. PP, no. 99, 2016.

[31] A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt, “Multi-modal semantic place
classification,” IJRR, vol. 29, no. 2-3, pp. 298–320, Feb 2010.

[32] E. Brunskill, T. Kollar, and N. Roy, “Topological mapping using spectral clustering
and classification,” in IROS. IEEE, 2007, pp. 3491–3496.

[33] M. Liu, F. Colas, and R. Siegwart, “Regional topological segmentation based on mu-
tual information graphs,” in ICRA. IEEE, 2011, pp. 3269–3274.

[34] Z. Liu and G. von Wichert, “Extracting semantic indoor maps from occupancy grids,”
Robotics and Autonomous Systems, vol. 62, no. 5, pp. 663–674, 2014.

[35] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reasoning with het-
erogeneous modalities,” in Proceedings of the 2012 IEEE International Conference
on Robotics and Automation (ICRA’12), Saint Paul, MN, USA, may 2012.

[36] C. Nieto-Granda, J. G. Rogers, A. J. B. Trevor, and H. I. Christensen, “Semantic map
partitioning in indoor environments using regional analysis,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, Oct 2010, pp. 1451–
1456.

[37] A. Rituerto, A. Murillo, and J. Guerrero, “Semantic labeling for indoor topological
mapping using a wearable catadioptric system,” Robotics and Autonomous Systems,
vol. 62, no. 5, pp. 685–695, 2014.

146

[38] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in
robotics,” in Proceedings of the Second Conference Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-86). New York, NY: Elsevier Science, 1986,
pp. 267–288.

[39] G. Dudek, P. Freedman, and S. Hadjres, “Using local information in a non-local way
for mapping graph-like worlds,” in IJCAI, 1993, pp. 1639–1647.

[40] D. Hahnel, S. Thrun, B. Wegbreit, and W. Burgard, “Towards lazy data association in
SLAM.” in ISRR’03, 2003, pp. 421–431.

[41] J. Biswas and M. M. Veloso, “Localization and navigation of the cobots over long-
term deployments,” The International Journal of Robotics Research, vol. 32, no. 14,
pp. 1679–1694, 2013.

[42] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,”
Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 354–363, 2005.

[43] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoid-
ance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[44] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity
obstacles,” The International Journal of Robotics Research, vol. 17, no. 7, pp. 760–
772, 1998.

[45] J. Rios-Martinez, A. Spalanzani, and C. Laugier, “Understanding human interac-
tion for probabilistic autonomous navigation using Risk-RRT approach,” in Intelli-
gent Robots and Systems (IROS), 2011 IEEE International Conference on, September
2011, pp. 2014–2019.

[46] N. E. D. Toit and J. W. Burdick, “Robot motion planning in dynamic, uncertain envi-
ronments,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 101–115, Feb 2012.

[47] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human
crowds: Statistical models and experimental studies of human-robot cooperation,”
The International Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.

[48] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A
survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726–1743, 2013.

[49] E. T. Hall, “The hidden dimension,” 1966.

[50] M. K. Lapinski and R. N. Rimal, “An explication of social norms,” Communication
theory, vol. 15, no. 2, pp. 127–147, 2005.

[51] F. Zanlungo, T. Ikeda, and T. Kanda, “A microscopic ”social norm” model to ob-
tain realistic macroscopic velocity and density pedestrian distributions,” PLOS ONE,
vol. 7, pp. 1–10, 12 2012.

147

[52] M. Shiomi, F. Zanlungo, K. Hayashi, and T. Kanda, “Towards a socially acceptable
collision avoidance for a mobile robot navigating among pedestrians using a pedes-
trian model,” International Journal of Social Robotics, vol. 6, no. 3, pp. 443–455,
2014.

[53] P. A. Lasota and J. A. Shah, “Analyzing the effects of human-aware motion planning
on close-proximity human–robot collaboration,” Human factors, vol. 57, no. 1, pp.
21–33, 2015.

[54] M. Joosse, A. Sardar, M. Lohse, and V. Evers, “BEHAVE-II: The revised set of mea-
sures to assess users attitudinal and behavioral responses to a social robot,” Interna-
tional Journal of Social Robotics, vol. 5, no. 3, pp. 379–388, 2013.

[55] E. Pacchierotti, H. I. Christensen, and P. Jensfelt, “Evaluation of passing distance for
social robots,” in ROMAN 2006 - The 15th IEEE International Symposium on Robot
and Human Interactive Communication, Sept 2006, pp. 315–320.

[56] A. Sardar, M. Joosse, A. Weiss, and V. Evers, “Don’t stand so close to me: Users’
attitudinal and behavioral responses to personal space invasion by robots,” in 2012
7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), March
2012, pp. 229–230.

[57] T. Kruse, A. Kirsch, H. Khambhaita, and R. Alami, “Evaluating directional cost mod-
els in navigation,” in Proceedings of the 2014 ACM/IEEE international conference on
Human-robot interaction. ACM, 2014, pp. 350–357.

[58] S. Y. Chung and H. P. Huang, “Incremental learning of human social behaviors with
feature-based spatial effects,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Oct 2012, pp. 2417–2422.

[59] B. Okal and K. O. Arras, “Formalizing normative robot behavior,” in International
Conference on Social Robotics. Springer, 2016, pp. 62–71.

[60] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human aware mobile
robot motion planner,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 874–883,
2007.

[61] T. Kruse, P. Basili, S. Glasauer, and A. Kirsch, “Legible robot navigation in the prox-
imity of moving humans,” in 2012 IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO), May 2012, pp. 83–88.

[62] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical
review E, vol. 51, no. 5, p. 4282, 1995.

[63] F. Zanlungo, T. Ikeda, and T. Kanda, “Social force model with explicit collision pre-
diction,” EPL (Europhysics Letters), vol. 93, no. 6, p. 68005, 2011.

148

[64] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-force based
approach with human awareness-navigation in crowded environments,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov 2013,
pp. 1688–1694.

[65] S.-Y. Chung and H.-P. Huang, “A mobile robot that understands pedestrian spatial
behaviors,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE, 2010, pp. 5861–5866.

[66] B. Kim and J. Pineau, “Socially adaptive path planning in human environments us-
ing inverse reinforcement learning,” International Journal of Social Robotics, vol. 8,
no. 1, pp. 51–66, 2016.

[67] C. Dondrup, N. Bellotto, M. Hanheide, K. Eder, and U. Leonards, “A computational
model of human-robot spatial interactions based on a qualitative trajectory calculus,”
Robotics, no. 4, pp. 63–102, 2015.

[68] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with
deep reinforcement learning,” arXiv preprint arXiv:1703.08862, 2017.

[69] C. Park, J. Ondřej, M. Gilbert, K. Freeman, and C. O’Sullivan, “Hi robot: Human
intention-aware robot planning for safe and efficient navigation in crowds,” in In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on.
IEEE, 2016, pp. 3320–3326.

[70] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in dynamic social envi-
ronments using multi-policy decision making,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), October 2016.

[71] ——, “Fast discovery of influential outcomes for risk-aware mpdm,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May 2017, pp. 6210–
6216.

[72] J. J. Gibson, The Ecological Approach to Visual Perception. Houghton, Mifflin and
Company, 1979.

[73] E. Uğur and E. Şahin, “Traversability: A case study for learning and perceiving affor-
dances in robots,” Adaptive Behavior, vol. 18, no. 3-4, pp. 258–284, 2010.

[74] G. Tsai, C. Johnson, and B. Kuipers, “Semantic visual understanding of indoor envi-
ronments: from structures to opportunities for action,” in Computer Vision and Pat-
tern Recognition Workshops (CVPRW), 2014 IEEE Conference on. IEEE, 2014, pp.
373–380.

[75] M. L. Benedikt, “To take hold of space: isovists and isovist fields,” Environment and
Planning B, vol. 6, no. 1, pp. 47–65, 1979.

149

[76] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of euclidean distance maps
and Voronoi diagrams,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Taipei, Taiwan, 2010. [Online]. Available:
http://ais.informatik.uni-freiburg.de/publications/papers/lau10iros.pdf

[77] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified
least squares procedures.” Analytical chemistry, vol. 36, no. 8, pp. 1627–1639, 1964.

[78] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting (with discussion and a rejoinder by the authors),” The Annals of
Statistics, vol. 28, no. 2, pp. 337–407, 04 2000.

[79] A. Turner, M. Doxa, D. O’sullivan, and A. Penn, “From isovists to visibility graphs:
a methodology for the analysis of architectural space,” Environment and Planning B:
Planning and design, vol. 28, no. 1, pp. 103–121, 2001.

[80] M. Batty, “Exploring isovist fields: space and shape in architectural and urban mor-
phology,” Environment and planning B: Planning and Design, vol. 28, no. 1, pp.
123–150, 2001.

[81] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry,
pp. 35–41, 1977.

[82] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[83] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[84] Ö. Erkent and H. I. Bozma, “Long-term topological place learning,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp. 5462–
5467.

[85] A. Howard and N. Roy, “The robotics data set repository (radish),” 2003. [Online].
Available: http://radish.sourceforge.net/

[86] L. Shi, S. Kodagoda, and G. Dissanayake, “Laser range data based semantic labeling
of places,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, 2010, pp. 5941–5946.

[87] P. Foster, Z. Sun, J. J. Park, and B. Kuipers, “Visagge: Visible angle grid for glass
environments,” in Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on. IEEE, 2013, pp. 2213–2220.

[88] Q. Zhang, D. Whitney, F. Shkurti, and I. Rekleitis, “Ear-based exploration on hybrid
metric/topological maps,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 3081–3088.

150

http://ais.informatik.uni-freiburg.de/publications/papers/lau10iros.pdf
http://radish.sourceforge.net/

[89] F. Savelli and B. Kuipers, “Loop-closing and planarity in topological map-building,”
in IROS, vol. 2, sept.-2 oct. 2004, pp. 1511 – 1517 vol.2.

[90] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,
no. 2, pp. 461–464, 1978.

[91] E. Remolina and B. Kuipers, “Towards a general theory of topological maps,” Artifi-
cial Intelligence, vol. 152, no. 1, pp. 47–104, 2004.

[92] T. Williams, C. Johnson, M. Scheutz, and B. Kuipers, “A tale of two architectures:
A dual-citizenship integration of natural language and the cognitive map,” in Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, ser.
AAMAS ’17. Richland, SC: International Foundation for Autonomous Agents and
Multiagent Systems, 2017, pp. 1360–1368.

[93] J. J. Park, “Graceful navigation for mobile robots in dynamic and uncertain environ-
ments,” Ph.D. dissertation, University of Michigan – Ann Arbor, 2016.

[94] G. Ferrer and A. Sanfeliu, “Bayesian human motion intentionality prediction in urban
environments,” Pattern Recognition Letters, vol. 44, pp. 134–140, 2014.

[95] K. Konolige, “A gradient method for realtime robot control,” in IROS ’00, vol. 1,
2000, pp. 639–646 vol.1.

[96] A. Aydemir, P. Jensfelt, and J. Folkesson, “What can we learn from 38,000 rooms?
reasoning about unexplored space in indoor environments,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012, pp.
4675–4682.

[97] N. Chernov and C. Lesort, “Least squares fitting of circles,” Journal of Mathematical
Imaging and Vision, vol. 23, no. 3, pp. 239–252, 2005.

[98] G. T. Toussaint, “Solving geometric problems with the rotating calipers,” in Proc.
IEEE Melecon, vol. 83, 1983, p. A10.

[99] A. Al-Sharadqah, N. Chernov et al., “Error analysis for circle fitting algorithms,”
Electronic Journal of Statistics, vol. 3, pp. 886–911, 2009.

151

	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Supporting Mapping and Navigation
	Topological Mapping
	Contributions

	Background and Related Work
	Topological Mapping
	Place Detection and Labeling
	Probabilistic Topological Mapping
	Socially-Aware Navigation in Human Environments

	The Hierarchical Hybrid Spatial Semantic Hierarchy
	The Hybrid Spatial Semantic Hierarchy
	H2SSHOverview
	H2SSHLocal Metrical Layer
	H2SSHLocal Topological Layer
	H2SSHGlobal Topological Layer
	Discussion

	Place Detection and Labeling Using Affordances
	Place Detection for Topological Mapping
	Locating Potential Gateways
	Classification Problem Formalization
	Place Classification with MCMC
	Incremental Place Detection
	Detecting Topological Events
	Discussion

	Evaluating Topological and Semantic Abstractions
	Cell-by-Cell Evaluation
	Topological Error Evaluation
	Human Labeling Variability
	Discussion

	Scalable Topological Mapping Using Lazy Evaluation
	The Topological Mapping Problem
	Probabilistic Tree of Maps
	Map Hypothesis Probability
	Lazy Evaluation of Map Hypotheses
	Loop Closures in the H2SSH
	Results
	Discussion

	Socially-Aware Navigation Using Topological Maps and Social Norm Learning
	Social Norms for Navigation
	Situations for Topological Navigation
	Topological Intention Estimation
	Learning Navigation Social Norms
	Socially-Aware MPEPC
	Experimental Methods and Results
	Discussion

	Discussion
	Conclusion
	Future Work

	Appendices
	Ground-truth Labeled Maps
	Place Labeling Results
	Human Variability Results

	Multi-laser Pedestrian Tracking
	Object Detection and Modeling
	Data Association
	Constant-Acceleration State Estimation

	Bibliography

