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Abstract— We present an algorithm for probabilistic topo-
logical mapping that heuristically searches a tree of map
hypotheses to provide a usable topological map hypothesis
online, while still guaranteeing the correct map can always
be found. Our algorithm annotates each leaf of the tree with
a posterior probability. When a new place is encountered, we
expand hypotheses based on their posterior probability, which
means only the most probable hypotheses are expanded. By
focusing on the most probable hypotheses, we dramatically
reduce the number of hypotheses evaluated allowing real-time
operation. Additionally, our approach never prunes consistent
hypotheses from the tree, which means the correct hypothesis
always exists within the tree.

I. INTRODUCTION AND RELATED WORK

Topological mapping is the process of discovering the
connectivity of places in an environment, of finding the
underlying decision structure. Topological mapping abstracts
the continuous experience of the robot into a discrete se-
quence of place events. Each place event corresponds to
the robot’s arrival at or departure from a distinctive state,
which might be a hallway intersection or visually unique
landmark. A topological map represents the world as places,
where qualitatively distinct decisions are presented to the
robot, and paths, which are simple connections between
places. The topological map abstraction provides a useful
representation for planning by factoring the problem into a
simple graph search through large-scale space and metric
motion planning in small-scale space. Topological maps also
scale well, as large portions of the metric environment – the
paths between places – can be ignored or represented as
simply the displacement between the places on either end of
the path.

In laser-based maps, the location of decision points, typ-
ically hallway intersections in indoor environments, often
appear very similar, making it difficult to assert that two
places are definitively the same or different. Therefore, each
place encountered as a robot explores an environment could
generate a number of new topological map hypotheses. The
number of hypotheses can grow exponentially and thus
become intractably large. Analytic constraints, like planarity
[1], can reduce the number of map hypotheses, but still leave
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Fig. 1. Topological map created by our algorithm of the third floor of the
EECS building at the University of Michigan.

too many viable hypotheses to yield a feasible algorithm for
large environments.

Topological mapping algorithms build graph-like maps
that identify the connectivity of places or landmarks within a
robot’s environment. The dramatic reduction in data achieved
by the topological map abstraction comes at the cost of
increased perceptual aliasing, different places appearing the
same, and image variability, the same place appearing dif-
ferent at different times [2]. The explicit modeling of loop
closures in topological maps makes false positives or false
negatives especially problematic. A data association error in
a metrical map will usually lead to small errors but leave
the map consistent with the environment. Falsely asserting
two different places to be the same in a topological map,
however, introduces an unrecoverable inconsistency into the
map. Most topological mapping algorithms use a combi-
nation of two techniques to handle perceptual aliasing: an
exploration strategy to confirm that a particular topological
map is correct, and incorporating metric information like
odometry and vision-based appearance models to increase
distinctiveness of places and paths.

Early work by Kuipers and Byun [3] decided among a set
of possible maps by attempting to navigate a route planned
within the map. If the robot was unable to follow the route,
the map hypothesis was discarded. Choset and Nagatani [4]
use a similar strategy to determine whether a new place
was previously visited. They create a set of possible places
at which the robot could have arrived, select a path to



follow, and rule out inconsistent matches based upon the
next visited place. They continue this process until a single
match remains. Dudek et al. [5] describe an exploration
strategy to find the correct topological map by maintaining
a set of distinct markers. The robot leaves these markers
at places with unexplored paths. When the robot traverses
a new path, it can then determine if the place at the end
was previously visited or is new. In later work, Marinakis
and Dudek [6] discuss the tradeoff an exploration strategy
must make between full exploration of the environment and
keeping the number of map hypotheses tractable. These
exploration-based approaches to finding the correct map are
ultimately unsatisfactory because they depend on complete
control of the robot’s actions, which robots that serve humans
(such as a robotic wheelchair) or that interact with other
agents likely will not have, and they may require a large
number of traversals through the environment, which is again
impractical on a robot operating in the human environment.
In this paper, we assume the robot has no control over the
order in which places in the environment are explored.

In recent years, probabilistic algorithms for topological
mapping have emerged to focus the search for the correct
map on the most probable hypotheses. Ranganathan and
Dellaert [7] use a Rao-Blackwellized particle filter where
each sample represents a topological map hypothesis. The
algorithm maintains the N most probable map hypotheses.
If N is small enough, the algorithm is able to run in real-
time and, based on the presented results, discover the correct
map. However, the particle filtering approach inherently
contains the risk of discarding or never generating the correct
map. Specifically, if an erroneous measurement causes the
correct hypothesis to be removed from the sample set, the
correct map can never be found because the history of map
hypotheses is not maintained.

An alternative probabilistic approach is presented by Tully
et al. in [8] based on the tree of maps described by Dudek
et. al in [9]. The tree of maps is a data structure where each
node represents a consistent topological map hypothesis, and
the leaves of the tree are the set of map hypotheses consistent
with all place events. When a new place event occurs, a new
set of hypotheses are generated for each leaf by asserting
different possible loop closures. Thus, the depth of the tree
is equal to the number of place events that have occurred.
In [8], the nodes of the tree are annotated with a posterior
probability using a recursive Bayes formulation. To avoid
the exponential growth of the tree, hypotheses with a low
measurement likelihood or posterior probability are pruned
after each update. This pruning step still leaves a substantial
number of hypotheses in the tree, making real-time operation
unlikely. Furthermore, pruning the tree means no guarantee
can be made that the correct map will be found.

We propose a new algorithm for topological mapping that
combines a probabilistic tree of maps similar to that used
in [8] with a heuristic search that focuses tree expansion
on the most likely hypotheses. We never prune consistent
hypotheses from the tree, ensuring the correct map can
always be found.

Our algorithm performs a heuristic search through the
tree of maps. We annotate each leaf in the tree with a
posterior probability. When a new place event occurs, map
hypotheses are expanded in order of decreasing posterior
probability. For each update, we only expand a subset of all
leaf hypotheses because only the most probable hypotheses
are expanded when a new place is visited. Therefore, as the
robot explores the environment, the leaves of the tree come to
represent different points in the sequence of events because
less probable hypotheses will have not been expanded. To
approximate the posterior of these hypotheses from previous
events, we use a heuristic based on the most probable map
hypothesis at the current depth of the tree. Measurements and
actions from each event are saved, so a hypothesis from a
previous event can be expanded when its estimated likelihood
is the maximum among all hypotheses.

Our topological map is a layer in the Hybrid Spatial
Semantic Hierarchy (HSSH) [10], which provides us with
a detailed local perceptual map (LPM), a metrical map, for
each place. The LPM defines the physical extent of each
topological place. We combine the physical extent of a place
with an optimized global layout of the environment as part
of our calculation of a map’s likelihood.

Lazy evaluation of a hypothesis tree using map likelihoods
has been previously applied in the context of robotic map-
ping. Hähnel et al. [11] proposed a lazy evaluation approach
to determining data associations in a feature-based metric
map. Similar to our heuristic search for loop closures, they
maintain a tree of data association decisions for all time
steps. Each node is labeled with the log-likelihood of the
measurements given the data association. The node with the
highest log-likelihood is considered until the maximum log-
likelihood node is a leaf in the tree. Our approach differs by
using a heuristic to estimate the log-likelihood of a node at a
future time. By doing so, our tree search potentially considers
fewer hypotheses and contains a smaller set of leaf nodes.

By performing lazy evaluation of the map hypotheses in
the tree of maps, our algorithm avoids the need to prune
hypotheses to maintain computational feasibility, unlike [8].
Furthermore, our heuristic search focuses expansion of the
tree on the most likely hypotheses, allowing a small number
of hypotheses to be evaluated for each event to achieve online
updates. Thus, our algorithm operates online, while ensuring
the correct map remains in the search space and can be found,
which, to the best of our knowledge, no existing topological
mapping algorithm achieves.

II. PROBABILISTIC TREE OF MAPS

The space of possible topological maps grows super-
exponentially [7] with the number of places visited by the
robot. In order to handle the exponential growth, we for-
mulate a probabilistic tree of maps where the measurement
likelihood is calculated for each leaf in the tree. Each depth
of the tree corresponds to a new place event pk. Using the
likelihoods for the leaves, we perform a heuristic search
through the probabilistic tree of maps to focus computation
on the most likely portions of the hypothesis space.



The probabilistic tree of maps, Hk, is a tree of height k
where the nodes represent topological map hypotheses. The
height of the tree is equal to the number of place events that
have occurred. We describe a map hypothesis symbolically
as Mn

i , where the subscript i indicates the last place event
included in the hypothesis, and thus its depth in Hk. A
posterior probability, lMn

i
= p(Zi|Mn

i , U
i), is calculated for

each map hypothesis. When generating new map hypotheses,
we consider only the set of leaf hypotheses, Lk ⊆ Hk.
For those Mn

i ∈ Lk with i < k, we use a heuristic to
approximate the posterior, l̃Mn

k
, at k.

A. Symbol Definitions

Uk = u1:k:
The sequence of actions.

Zk = z0:k:
The sequence of observations.

zk = 〈mk, sk, λk−1,k〉:
The observations at event k.

mk: The LPM of the observed place at event k.
sk: The local topology of the place observed at event

k.
Mn = 〈Pn, Tn, χn〉:

A map hypothesis in the tree of maps.
〈p,mp, sp〉 : p ∈ Pn:

The set of places in a map.
Tn: The topological map for Mn.
χn: The planar embedding of Tn.
Λnobs: The observed displacements between places in Mn.
lMn

i
: The posterior for a map hypothesis Mn that in-

cludes events up to i.

B. Assumptions

We make the following assumptions in our calculations:
1) The places in the environment are static.
2) Place detection is deterministic. There are no false

positives or false negatives in our place detector. While
place detection is deterministic, place matching is
imperfect.

3) The correct path is followed when leaving a place.

C. Map Hypothesis Likelihood

1) Local Topology, s: Given a series of observed local
topologies, s0:k, we calculate p(s0:k|Pn, Uk), the likelihood
of observing the series of local topologies given the topology
of the map. The local topology is assumed to be estimated
correctly, so the likelihood for a single local topology is (1),
where snpk is the local topology of the place visited at event
k in Mn. The likelihood of all local topology measurements
(2) can be evaluated recursively because the local topology
for a place does not change over time.

p(sk|snpk , uk) =

{
1 if sk = snpk
0 if sk 6= snpk

(1)

p(s0:k|Pn, Uk) =

k∏
i=0

p(si|snpi , ui) (2)

2) Place Layout, χ: Given a topology Tn and a set of
metric path transformations, Λnobs, we calculate the maximum
posterior place layout, χnMAP . Each λab ∈ Λnobs is a Gaussian
distribution representing the transformation from the origin,
(0, 0, 0)b, of place b to the origin, [(0, 0, 0)b]a, of place a.

µλab
= (∆x,∆y,∆θ) (3)

Σλab
=

σ2
∆x 0 0
0 σ2

∆y 0

0 0 σ2
∆θ

 (4)

The place layout χ minimizes the objective function in (5)

Eχ = (Λχ − Λnobs)
TΣ−1

Λn
obs

(Λχ − Λnobs)

∝ − log p(χ|Λnobs)
(5)

Thus, we minimize the log-likelihood − log p(χ|Λnobs) to
obtain (6).

χnMAP = arg max
χ

p(χ|Λnobs) (6)

We then use this value p(χMAP |Λnobs) as the likelihood
of a given place layout.

3) Place Compatibility, p: Each place p ∈ Pn is assumed
to represent a distinct portion of the environment. Therefore,
a map hypothesis in which places overlap is less likely
than a map hypothesis with no overlap. Using χn, the area
occupied by each LPM can be transformed into a single
global reference frame, which allows for straightforward
calculation of the overlap between two places.

For each p ∈ Pn, χn specifies the pose of the place
center, χp. The associated LPM, mp, can be transformed
to be centered at χp, giving mχ

p . The compatibility between
two places is defined in (7) and is based on the ratio of the
overlapping area between the places to the minimum of the
place areas.

c(mi,mj) =
area(intersection(mχ

i ,m
χ
j ))

min(area(mi), area(mj))
(7)

Using (7), the overall place compatibility, p(Pn|χn), of a
map with Np distinct places is the product of the compati-
bility between each pair of places in Mn.

p(Pn|χn) =

Np∏
i=0

Np∏
j=i+1

exp(−κc(mi,mj)) (8)

D. Map Posterior

We use the same prior as [8], shown in (9), where NPn is
the number of places in a map and k is the total number of
place events, which favors map hypotheses with fewer places.
The overall likelihood of a map hypothesis, p(Zk|Mn, Uk),
factors into the three quantities described in Section II-C.
We assume each measurement is independent. Therefore, the
overall likelihood of a map hypothesis, (10), is the product
of the individual measurement likelihoods. The full map



posterior combines the likelihood terms from above with the
map prior to yield (11).

p(Mn|Uk) ∝ exp(NPn log k) (9)

p(Zk|Mn, Uk) = p(s0:k|Pn, Uk)p(χMAP |Λnobs)
p(Pn|χnMAP )

(10)

p(Mn|Zk, Uk) = ηp(Zk|Mn, Uk)p(Mn|Uk) (11)

E. Posterior Heuristic

Our likelihood heuristic, hld, where d is the depth of the
tree at which the heuristic applies, uses the minimum change
in measurement likelihood from a parent hypothesis to its
children. This quantity is equivalent to the maximum ratio
of child likelihood to parent likelihood as shown in (12). The
heuristic gives an estimate of how we expect the likelihood
of a map hypothesis to change when incorporating the next
place event.

hld = max(
lMn

d

lparent(Mn
d )

) : Mn
d ∈ Hk) (12)

Our prior heuristic, hpd, where d is the depth of the tree
at which the heuristic applies, uses the maximum values of
the posterior among the hypotheses at that depth of the tree.

hpd = max(p(Mn
d |Uk)) (13)

Combining (12) and (13), we calculate the estimated
posterior l̃Mn for a map hypothesis in (14).

l̃Mn
k

= lMn
i
hpd

k∏
d=i+1

hld (14)

For those hypotheses with i = k, l̃Mn
i

= lMn
i

.

III. LAZY EVALUATION OF MAP HYPOTHESES

Our algorithm for searching through the probabilistic tree
of maps, described in Section II, proceeds as follows.

When place event k + 1 occurs, map hypotheses are
evaluated in descending order of l̃Mn

i
using a priority queue.

When expanding a hypothesis, Mn
i , place event i + 1

is used. Each child hypothesis is added to the priority
queue and might be evaluated during the current update.
Hypotheses are expanded until the queue is empty or at least
Nexpand hypotheses have been expanded and max(lMn

k+1
) >

max(l̃Mn
k

).
The key step in Algorithm 1 is children ←

Expand(hk−1, ek) described in Algorithm 2. When expand-
ing a map hypothesis with a new event, all frontier places
– those places with at least one unexplored path segment –
are compared against the topology of the new place. If the
topology of the places match and the entry path fragment
of the new place is a frontier path fragment in the matched
place, then a new map hypothesis is generated. The new
hypothesis asserts a new loop closure between the robot’s

Algorithm 1 LazyEvaluation(M)
Require: M is a valid hypothesis tree
L← Leaves(M)
Q← PriorityQueue
for all l ∈ L do
Push(l, Q)

end for
n← 0
maxP ← 0
while HasNext(Q) and n < Nexpand and maxP <
Posterior(Top(Q)) do
h = Top(q)
children← Expand(h)
for all c ∈ children do

if Depth(c) < Height(M) then
Push(c,Q)

else if Posterior(c) > maxP then
maxP ← Posterior(c)

end if
end for
n← n+ 1

end while

Algorithm 2 Expand(h, e)
Require: h is a valid topological map hypothesis up to event
k − 1.

Require: e is the k event in the event sequence.
Children← List
p← h.LastP laceV isited()
{If on a known path in this map hypothesis, a new place
will not be added}
{for this event. Only the position of the robot in the map
changes.}
if h.OnKnownPath() then
child← h.UpdatePosition(e)
Children.Add(child)

else
Frontiers← h.FrontierP laces()
{If position was moving toward a frontier, then find all
frontier places with compatible local topologies, Sf , and
create a child hypothesis for each one.}
for all f ∈ Frontiers do

if Sf = Se and Sf .IsFrontier(Se.Entry()) then
child← h.ConnectP laces(p, f)
Children.Add(c)

end if
end for

end if
return Children



Fig. 2. Sequences of places visited by the robot in our first dataset.

previous location in the parent map hypothesis and the
frontier place.

IV. EVALUATION

We evaluate our lazy evaluation algorithm in indoor en-
vironments at the University of Michigan. We used our
robotic wheelchair, Vulcan, equipped with a forward-facing
laser rangefinder and an inertial measurement unit for our
experiments. Vulcan is not equipped with wheel encoders.
The robot was manually driven through the environment.
Our algorithm was implemented as the global topological
layer of the HSSH. Places are located at decision points
in the environment. Decision points correspond to regions
in the robot’s local perceptual map containing two or more
unaligned gateways, as detailed in [10].

Our first dataset, Figure 2 consists of an exploration
through an environment with only T and plus intersections.
We used this dataset to compare the growth of the tree
of maps using our lazy evaluation approach with the fully
expanded tree of maps. We ran our lazy evaluation algorithm
with different settings for Nexpand, the minimum number of
hypotheses to expand for each event to further explore the
possibilities for reducing the tree size. In all cases, the correct
map had the highest posterior at the end of the dataset.

Figure 3 shows the growth in the number of map hy-
potheses versus the number of events. The behavior matches
that of [7], [8], where a small number of map hypotheses
eventually dominate the posterior distribution. While the
overall behavior of each algorithm is similar, the performance
differs in significant ways.

Our topological place representation uses the decision
structure extracted from a metric representation of the place.
This representation describes exactly the number of paths
incident to a place, which limits the space of possible map
hypotheses because a place with all paths connected to places
will no longer be a candidate for a loop closure. Figure
4 shows how this representation limits the growth. When
Nexpand = 0, after event 17, only a single hypothesis is
expanded for each event because the robot is moving only
between known places.
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Fig. 3. The growth in the number of hypotheses as a function of Nexpand.
The full search grows exponentially, as expected. The growth of the lazily
evaluated trees begins to slow as more events occur because the distribution
of the map hypotheses becomes more peaked.
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Fig. 4. The number of hypotheses evaluated for at each event. The full
search expands every hypothesis for each event, so the number of evaluated
hypotheses grows exponentially. With lazy evaluation, only a subset of the
leaf nodes are expanded for each event, limiting the overall growth of the
tree. Nexpand = 0 corresponds to best-first greedy search and after event
17 expands only the most probable hypothesis, which corresponds to the
correct map. Only one hypothesis is evaluated because the robot is moving
within known portions of the map.

In contrast, the place representation used in [7] treats each
place as a simple landmark with no information about the
number of incident paths. As a result, each event generates a
potentially larger number of hypotheses when compared with
our representation. The dataset gathered in Figure 5 contains
36 place events. The average update time per event was 0.26s
and the maximum update time was 1.4s. In comparison, the
simulated dataset from [7], which also used no laser or visual
appearance models and consists of 33 place events, took their
algorithm an average of 4.2s per update.

Tully et al. [8] use a similar place representation to our
own that is based on junction points in the Voronoi diagram.



Fig. 5. Sequences of places visited by the robot in our second dataset.

They also perform their search on a tree of maps annotated
with posterior probabilities. However, their algorithm ac-
tively prunes improbable hypotheses which means the correct
hypotheses could be pruned from the tree, making the correct
map unrecoverable.

We believe our approach will scale better than [8] for
the following reasons. First, though hypotheses are pruned
from the tree, their algorithm expands every leaf hypothesis
for each update. As the map grows larger, the number of
expansions will grow considerably. In comparison, we focus
our search on a smaller number of hypotheses and expand the
tree only as much as necessary. Second, we use an optimized
place layout to evaluate the likelihood of a map hypothesis.
When an incorrect match is made between two places, the
place layout becomes globally inconsistent. Their approach
uses only local path information between places. Therefore,
an incorrect match between two places has less effect on
the posterior of a map, which keeps the posterior higher for
more map hypotheses. Evaluation of these assumptions on a
large dataset is left for future work.

V. CONCLUSION

We have a demonstrated a probabilistic topological map-
ping algorithm that effectively reduces the search space of
potential topological map hypotheses to allow topological
mapping in real-time while never eliminating the correct
map from the search space. Our algorithm takes a lazy
evaluation approach by only expanding the most probable
map hypotheses. By focusing our search on only the most
probably hypotheses, we have shown the number of maps
considered is reduced by at least an order of magnitude for
our testing environment. The tree of maps is never pruned.
Instead, our algorithm assumes leaves exist at different
depths of the tree and handles this case explicitly. Never
pruning the tree guarantees that the correct map can always
be found, though extremely poor measurements could make
the correct map very improbable. This problem is general to
all mapping algorithms, though.

The performance of our algorithm depends on Nexpand.
For future work, we plan to investigate how we can leverage
the tradeoffs presented by this parameter. Nexpand effectively
controls how greedy the search is. At early stages, more
exploration through the tree is desired, but as time goes on,
focusing the search on only the most probable hypotheses
seems wise. Can we correlate a value of Nexpand with the
posterior distribution of map hypotheses?

Finally, the algorithm presented here makes no use of
laser or visual appearance models. The use of appearance
models should yield a much higher peak in the map posterior
around the correct hypothesis. We plan to incorporate a visual
appearance-based model like FAB-MAP [12] into our lazy
evaluation algorithm.
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