Operation Graduation: Donate Graduation Gowns

As many of you know, paying for graduation apparel is expensive, and the items are often only used once by students. Our organization, Operation Graduation, is working on establishing a system for collecting and recycling Graduation Gowns so that students have the option to obtain them at a lower cost/free of charge (details pending). We hope to pilot this gown program within the College of Engineering in the near future, and eventually expand from there.

Many of the details of this program are still being determined. We have many exciting ideas such as creating an online database of gown images so that students can see who wore their gowns previously. For this phase of the project, however, we are focused on accruing gowns.

If you are interested in participating, please fill out this form. If you have any questions, do not hesitate to reach out to us at operation.graduation@umich.edu.

Looking for a Coder - Opportunity Available

Four entrepreneurship-minor students have started a small company that we believe has extreme potential to be something great. DeliverEase UM is a delivery service for everything and within a month of business, we have nearly reached $500 in revenue. We are interested in finding an EECS student to partner with who would be capable and willing to help develop an app or website. If you have these skills, are interested in hearing about our business more, or would be interested in this type of collaboration, please contact Hannah Knifcher (hknif@umich.edu).

Want to Play the Bells of Burton Tower and Lurie Tower? Apply to Study Carillon!

UM has 2 of only 600 carillons in the world, including the 4th heaviest carillon in North America. The instrument is played from a keyboard and pedalboard.

Carillon 150 includes a half-hour private lesson in carillon performance each week on the practice carillons in Burton Memorial Tower or in the Duderstadt Center. There is also an hour-long studio class once a week, in which students come together to perform for each other. Studio class alternates between the two towers. Students can practice on 3 practice keyboards (not audible to the public), and on the real bells (public), between 5-7 pm, and we do one Saturday field trip to other bell towers in Michigan. Instead of a final exam, there is a final recital.

Prerequisite: Ability to read treble and/or bass clef notation. Lessons are individually scheduled, and studio class is scheduled via a Doodle, usually for an hour-long period between 5-7 pm on Tuesday, Wednesday, or Thursday evenings.

Applications are now open. For details on requirements and how to apply, please see the following website: http://www.music.umich.edu/current_students/student_resources/studeassignmentinstruct.php

Computing4Change Competition

Are you an undergraduate student who wants not just to enhance your skillset, but also to create positive change in your community? SIGHPC is launching a new competition for students from diverse disciplines and backgrounds who want to work collaboratively to:

Learn to apply data analysis and computational thinking to a social challenge.
Experience the latest tools and techniques for exploring data through visualization
Expand skills in team-based problem solving
Learn how to communicate ideas more effectively to the general public

The next Computing4Change event will be held at the SC18 conference (11-16 Nov 2018, in Dallas, TX). SIGHP will support 16 students to travel to SC18 for the competition.

Nominations open: 9 April
Nominations close: 21 May (there will be no extensions)
Winners announced: Late June

For more information, including eligibility criteria, visit: http://www.sighpc.org/computing4change

OSUM Seminar

The Optics Society of University of Michigan invites you to the 2018 Annual AAOSA/OSUM Seminar:

Speaker: Prof. Liuyan Zhao, Physics, University of Michigan
When: 4:00-5:00 PM, April 17th
Where: 340 West Hall

Title: Shedding Light on Quantum Materials

Abstract: Modern quantum materials research have shown us an exceptional wealth of novel states of matter among which some exhibit broken symmetries, some live for ultrashort time periods and some exist over the micro-scale. During the development of modern quantum materials, linear and nonlinear optical spectroscopies have played an unmissable role in both revealing new states of matter and understanding their microscopic origins. In this talk, I will show how optical techniques have been exploited in studying quantum materials with energy, time, spatial and symmetry resolutions.

This information is sent on behalf of the individuals listed in each announcements. These opportunities are not directly affiliated with the EECS Undergraduate Advising Office.

www.eecs.umich.edu